お役立ちコンテンツ | フリーランスエンジニアの案件・求人なら【テクフリ】

お役立ちコンテンツ

フリーランスの抱える税金や確定申告、社会保険や経費に関するお悩みを解決いたします。そもそもフリーランスになるためにはどうすればよいのか、現在正社員で働いているが、フリーランスになりたいと考えている方々にも必見です。役立つコンテンツ満載でお届けいたします。

該当コンテンツ数263件中13~24件を表示
freelance
iOSエンジニア

iOSアプリの開発にはどの言語を使うのがベスト?

iPhoneやiPad向けのアプリ開発といえば、長らくMac提供の公式開発言語であるObjective-Cまたは、Swiftでした。 しかし、ここ数年、クロスプラットフォームアプリの開発技術が次々と確立し、Objective-CやSwift以外のプログラミング言語でiOSアプリ開発するのが当たり前になりつつあります。 今回は、改めて、Objective-CとSwiftの特徴を整理すると同時に、この二つ以外の、iOSアプリ開発が可能なプログラミング言語(クロスプラットフォーム環境)についてもご紹介したいと思います。 フリーランスのiOS案件を探してみる iOSアプリとは? 改めて説明することではないかもしれませんが、iOSアプリについて、確認しておきましょう。 iOSアプリとは、その名の通り、iOS上で動くアプリのことです。iOSが搭載された機器は、Macから発売されたiPhone・iPad・iPod touch・Apple TVなどが挙げられます。ライバルのAndroidは様々なメーカーのスマホに搭載されていますが、iOSはMacから発売されたハードウェアにしか搭載されていません。 ちなみに、パソコンでもまったく同じことが言えます。Windowsが様々なメーカーのパソコンに搭載されているのに対して、macOSはMacBookやiMacなどのMac製品にしか搭載されていません。iOSもmacOSも純粋なシェア率だと、ライバルに負けていますが、一部の熱心なファンを獲得することに成功しています。 さて、話を戻すと、iOSはいわゆるUnix系OSで、実はパソコン用のmacOSをスマホ用に最適化したものです。ところが、長らくiOSアプリはmacOS上で動作できませんでした。 しかし、2019年秋にリリースされた、『macOS Catalina』から、ついにmacOS上でiOSアプリの動作が可能になりました。そして、2022年秋にリリースされた最新の『macOS Ventura』でも同じく動かすことが可能です。つまり、2023年現在、iOSアプリは、macOSアプリと呼ぶこともできるのです。 関連記事:iOSエンジニアの仕事内容や必要なスキルとは?【年収や将来性・案件情報を徹底解説】 iOSアプリの種類 一口にiOSアプリと言っても様々な種類があります。iOSアプリは大きく次の3つに分類されます。 ネイティブアプリ ハイブリッドアプリ クロスプラットフォームアプリ ネイティブアプリは最も一般的なiOSアプリであり、主にiOSのみでしか動かないアプリを指します。AndroidやWindowsなど他のOSでは動かすことができません。 ネイティブアプリはiOS専用に作られるため、iOSの機能をフル活用できるのがメリットです。反面、Androidアプリも別に作らなくてはいけないため、開発の手間がかかるのがデメリットです。ほとんどの場合、iOSアプリとAndroidアプリは両方リリースするため、片方ずつ作るというのは効率が悪く、ネイティブアプリ開発を避ける企業も多くあります。 一方でハイブリッドアプリは、Webアプリを開発する技術によって、iOS・Androidアプリを開発しています。OSごとに開発を行う必要がないため、開発工数を減らせるのがメリットです。反面、iOS用に最適化させていないため、iOSで動かした場合動作が遅くなる可能性もあります。 クロスプラットフォームも同じく、OSごとに開発を行わなくても、1種類の言語で全て開発できる技術のことです。ただ、ハイブリッドアプリとはやり方が異なります。 クロスプラットフォームアプリの場合、1種類の言語で開発し、それをiOSやAndroid用の言語に変換することで、複数OSに対応させているのです。こちらのやり方の方が、アプリの性能を落とさずに済みます。そのため今後は、クロスプラットフォームアプリが主流になると予想されます。 iOSアプリ開発に必要な環境 iOSアプリ開発を行う際に必要なものは次の通りです。 Macパソコン ネット環境 Apple ID iOSアプリの開発言語 iOSアプリの開発環境 Macのパソコンは必須です。WindowsではiOSアプリの開発は難しいです。 iOSアプリの開発言語は、次のようなものが該当します。 Objective-C Swift JavaScript Python Kotlin Objective-C・Swiftはネイティブアプリ、その他はクロスプラットフォームアプリ開発に活用されています。iOSアプリ開発を行う際にはいずれかの言語を習得しなくてはいけません。 各言語にはそれぞれメリット・デメリットがあります。後ほど詳しく解説しますが、先に結論だけお伝えすると、JavaScript・Python・Kotlinのいずれかがおすすめです。 iOSアプリの開発環境の中で多く使われているのはXcodeです。XcodeはApple社公式の統合開発環境であり、ネイティブアプリを開発するなら必須と言えるでしょう。初心者でも使いやすいように設計されているうえに、コード編集機能・テスト機能なども充実しています。無料でこれだけの機能が使えるのが、Xcodeが広く普及している理由でしょう。 ただし、Xcodeではクロスプラットフォームアプリは作ることができません。クロスプラットフォームアプリを作るなら、FlutterやReact Nativeなど他の開発環境が必要です。FlutterやReact Nativeの詳しい仕様についても後述します。 Objective-C まずは、基本の基本である、Objective-Cから見ておきましょう。 Objective-Cは、その名前があらわす通り、「オブジェクト指向を取り入れたC言語」です。C言語にオブジェクト指向を取り入れたプログラミング言語としてはC++もありますが、オブジェクト指向への対応法が異なるため、コーディング方法に差異があります。 C言語の後継として生まれたので、本来、汎用プログラミング言語として、多様な環境で利用できるだけのポテンシャルを持つObjective-Cなのですが、残念なことに、macOSとiOS、そして、それらのご先祖様にあたるNeXTというOSの専用プログラミング言語と化しています。 筆者はObjective-Cを悪い言語だと思いません。しかし、1984年リリースと歴史が長い分、いまどきのモダンなプログラミング言語よりも、習得難易度が高く、しかも、macOSとiOSの専用プログラミング言語状態のため、応用が利かないという、どうにもならない弱点を抱えています。 2023年現在Objective-Cは新規のアプリ開発でほとんど使われていません。また、Objective-Cで稼働している既存アプリも、他言語に改修する動きが広がっています。 iOSアプリ開発のためにObjective-Cを極める必要は薄くなったと感じます。 Objective-Cの案件を探してみる Swift Swiftは歴史あるObjective-CにかわるmacOSやiOSの公式標準開発プログラミング言語として、2014年にMacから発表されたプログラミング言語です。 従来のObjective-Cと共存ができるのですが、世代が異なるため、Swiftにあって、Objective-Cにない機能があるなど、共存させようとして苦労している開発者が多数です。また、SwiftとObjective-C間のデータのやり取りのところで、バグを起こしてしまった、という話もよく聞きます。基本的には併用しないのがベターです。 伝統のObjective-Cと革新のSwift、どちらを選択するかですが、Swiftの方がObjective-Cより習得難易度が低いため、いまからプログラミング言語を学ぶのであれば、Swiftの方が良いという意見が多数です。 ただし、Swiftは毎年バージョンアップが行われており、今後、Python2.0とPython3.0のような「破滅的な仕様変更」が起きる可能性もあります。また、iOSアプリ開発分野では、後述するその他の言語も注目されており、Swiftを使わなければいけないことはありません。 iOSアプリ開発でSwiftの利用が必須でなくなった今、やはりiOSアプリ開発のためだけにSwiftを極める必要は薄くなったと感じます。 Swiftの案件を探してみる その他の開発言語 繰り返しになりますが、長らくiOSアプリの開発は、公式開発言語であるObjective-Cまたは、Swiftでしたが、現在は、クロスプラットフォーム開発環境を整えることで、Objective-CやSwift以外のプログラミング言語で、iOSアプリとAndroidアプリを同時開発できるようになっています。 という訳で、クロスプラットフォーム開発環境と、その開発環境で利用できるプログラミング言語をご紹介いたします。 ①React Native Facebookが公開しているオープンソースのモバイルアプリケーション用フレームワークです。iOSアプリとAndroidアプリの両方の開発ができ、開発元のFacebookはもちろん、メルカリも採用しているようです。 対応プログラミング言語としては、JavaScript, Java, C++, Objective-C/Objective-C++, Pythonになります。オープンソースということで、インターネット上での情報も多く、利用がしやすいクロスプラットフォーム開発環境です。 ②Visual Studio Microsoftの統合開発環境(IDE)であるVisual StudioでもiOSとAndroidのクロスプラットフォーム開発が可能です。iOSとAndroid以外にはWindowsアプリにも対応できます。 Visual Studioは対応言語が多く、C/ C++、Visual Basic、C#、F#、JavaScriptさらには、プラグインを適用することでPythonやRubyにも対応しています。 ちなみに、MicrosoftはXamarinというクロスプラットフォーム用のライブラリやフレームワークを開発していた会社を2016年に買収しています。 ③Kotlin/Native Androidの公式開発言語である、KotlinでiOSアプリとAndroidアプリを同時開発することができる技術がKotlin/Nativeです。 Kotlin/Nativeの概要としては、Kotlinで作成したソースコードをiOSアプリ、Androidアプリ向けにコンパイルする技術です。この二つ以外にも、macOSアプリ、Windowsアプリなどにもコンパイルすることができます。 ④Flutter(Dart) Flutterは2018年にGoogleがリリースしたフレームワークです。 Flutterでは同じくGoogleが開発したDart(ダート)という言語が使われています。Dartは元々マイナーな言語でしたが、Flutterで動かせる言語として注目されるようになりました。文法はJavaScriptに似ており、JavaScript履修者なら習得は容易です。 Flutter(Dart)を使うことで、iOS・Android・Webアプリ全てが作れてしまいます。以前はドキュメントが少なく勉強しにくいのが難点でしたが、最近は優秀さが認められるようになったことで、日本語のドキュメントも充実してきました。 結局何がいいの? 自身のスキルや、キャリアプランにもよると思いますが、プログラミング初学者の方が、これから、iOSアプリ開発のためにプログラミング言語の学習を始めるのであれば、習得難易度と、将来性の観点から次の三つのプログラミング言語がベターだと思います。 ・JavaScriptまたはPython(React Native) ・Kotlin(Kotlin/Native) 公式開発言語であるSwiftやObjective-Cはどうなの?と聞かれると、正直、イマイチです。 理由としては、どちらのプログラム言語も上の三つより習得難易度が高く、実質、iOSアプリとmacOSアプリ開発専用プログラミング言語にとどまっているからです。それでもあえて、公式開発言語で開発したいとお考えであれば、Objective-Cの方がおすすめです。 Objective-Cは習得難易度という意味で、iOSアプリ開発ができるプログラム言語の中で、もっとも難しいプログラミング言語だと思います。特に、モダンなプログラミング言語なら、自動で行ってくれるメモリ管理も、自らで行わなくてはならないのは、初心者には難しいことだと思います。しかし、技術の幅を持たせるために、苦労して学ぶ価値があります。 まとめ:クロスプラットフォーム開発が当たり前の時代に クロスプラットフォーム開発されていない純粋なiOSアプリは、iOSのシェアと命運を共にすることになります。 そう考えたとき、近年、iOSのシェアがAndroidに押されつつあるうえに、中国のスマホメーカーであるHUAWEIが新たなスマホ用OS『Harmony OS(鴻蒙OS)』を開発・市場投入するなど、iOSの先行きに暗い影を落としそうな、ネガティブなニュースが続いているのが実情です。 もちろん、多くの新機能が追加され作業効率化に貢献してくれる『macOS Ventura』の登場や、毎年盛り上がりを見せる新型iPhoneSEの登場など、暗いニュースばかりではありません。iOSは一定の人気を保っているのは間違いありません。 しかし、今後は、Objective-CとSwiftで「Androidでは動かない純粋なiOSアプリ」を開発することは、まず推奨されないでしょう。特にビジネスでスマホアプリを開発するのであれば、なおさら、効率アップのためにクロスプラットフォームでの開発です。 テクフリでフリーランス案件を探してみる
freelance

UI/UXデザイナーにおすすめの資格4選!【スキル別】

UI/UXデザイナーは、自身のスキルを示すものとしてポートフォリオや過去の実績が重視されます。一方で、資格を取得することでスキルの裏付けとなり、転職やフリーランス転向に役立つこともあるでしょう。 本記事ではUI/UXデザイナーに求められるスキルとともに、そのスキルを証明するのに必要な資格とその具体的な資格取得方法、内容などをまとめてお伝えします。 UIUXデザイナーのフリーランス案件を探してみる UI/UXのスキル別に役立つ資格4選 現在、前述の通りUI/UXデザイナーは需要も高く、さまざまなスキルを身に付ける必要があります。そのため、資格はスキルの証明になります。しかし、UI/UXデザイナーには特定の資格は必要ありません。一方で、資格取得は大きなアピールポイントになり、フリーランスの方の受注や転職にもプラスの材料となるといえるでしょう。UIデザイン、UXデザインそれぞれで必要とされるスキルとそれを証明できる資格や試験は以下となります。 ウェブデザイン技能検定(UIデザイン) ウェブデザイン技能検定は、特定非営利活動法人インターネットスキル認定普及協会が実施している、Webデザインに関する国家資格です。資格は1級から3級まで分かれており、1級2級には実務経験がないと受験資格が与えられない(1級は7年以上、2級は2年以上)ため、この資格があるというだけでキャリアの証明にもなります。 ちなみに、各級とも学科試験と実技試験で構成されており、実技試験では私物のパソコンを持参し、実際に課題Webサイトを作成する内容になっています。難易度は3級の場合、それほど高くなく、他の国家資格(IT資格等)に比べ難易度は低いといえるでしょう。ます。出題形式と合格基準は下記の通りです。 出題形式 合格基準 学科 筆記試験(マーク方式):「多肢選択法」「真偽法」形式 70点以上(100点満点) 実技 課題選択方式 70点以上(100点満点) ※試験要項に示す各作業分類において配点の60%以上の得点を得ること 引用:https://www.webdesign.gr.jp/summery/schedule/ Webクリエイター能力認定試験(UIデザイン) Webクリエイター能力認定試験は、サーティファイという企業が主催している民間資格試験です。Webクリエイターに必要とされる、Webサイト制作のデザイン能力およびWebページのコーディング能力を認定する試験です。取得できるランクは「スタンダード」と「エキスパート」の2種類があり、HTML5とCSSの文法を使用したコーディングを行う試験内容となります。Webクリエイター能力認定試験には受験資格がないため、誰でも挑戦できます。出題形式と合格基準は下記の通りです。 スタンダード エキスパート 出題形式 実技問題 知識問題・実技問題 合格基準 得点率65%以上 (合計得点において)得点率65%以上 引用:https://www.sikaku.gr.jp/web/wc/contents/about/content/1/ Google UX Designプロフェッショナル認定(UXデザイン) Google UX Designプロフェッショナル認定は、Googleが提供しているUXデザイナー養成オンラインコースです。取得できるとGoogle認定の証明書を受け取れます。このコースでは、UXデザイナーになるためのグーグル認定のトレーニングを受講します。、7つのコースを週10時間ほど学習し、約6ヶ月で受講完了するという流れです。 現在受講内容は英語のみでの提供となっていますが、オンラインビデオの内容は全てスクリプトがあるためDeepLを利用すれば英語が苦手な方でも受講できます。こちらのカリキュラムは試験に合格する形ではなく、コースを終了するごとに証明書をもらえる形の資格となります。受講内容と料金は以下のとおりです。 UXデザインの基礎 UXデザインプロセスをはじめる ワイヤーフレームと低精度プロトタイピング UXリサーチと初期コンセプトのテスト Figmaでの高精度のデザインとプロトタイピング Adobe XDによるレスポンシブWEBデザイン ソーシャルグッドのためのUXデザインと、就職の準備 受講料金は月$39(約6ヶ月で$234)となっています。 https://www.coursera.org/professional-certificates/google-ux-design 人間中心設計(HCD)専門家資格認定制度(UXデザイン) 人間中心設計(HCD)専門家資格認定制度は、公益団体の人間中心設計推進機構が実施している、UXデザインなどについての専門性を明らかにするための資格です。HCD(人間中心設計)とは、UXに含まれるひとつの要素で、人間がプロダクトを使いやすくすることに焦点を置いた、使う人の観点でものを作るためのしくみです。 HCDには使いやすさ(ユーザビリティ)はもちろん、観察・理解・設計・評価などの利用者の視点に立つための知識が必要とされています。認定制度には、専門家とスペシャリストの2種があり、経験やコンピタンスに応じた認定が行われます。 人間中心設計専門家(認定HCD専門家) ユーザビリティ、人間中心設計(HCD)、UXデザイン、サービスデザインに関わる実務経験5年以上。 HCDの視点でプロジェクトマネジメント経験あるいはHCDの組織導入経験があること。 専門能力を実証するための実践事例が3つ以上あること。 人間中心設計スペシャリスト(認定HCDスペシャリスト) ユーザビリティ、人間中心設計(HCD)、UXデザイン、サービスデザインに関わる実務経験2年以上。 専門能力を実証するための実践事例が3つ以上あること。 https://www.hcdnet.org/certified/ ウェブ解析士 ウェブ解析士は、ウェブサイトやWebアプリのアクセス解析に関する知識とスキルを有していることを認定する資格です。一般社団法人ウェブ解析士協会が主催しています。試験は、インターネット上で120分50問の4択問題で行われ、合否は試験直後に判定されます。主な出題内容は以下のとおりです。 ウェブ解析と基本的な指標 事業戦略とマーケティング解析 デジタル化戦略と計画立案 ウェブ解析の設計 インプレッションの解析 エンゲージメントと間接効果 ウェブサイトの解析 ウェブ解析士のレポーティング 上記のように、ウェブ解析やデジタルマーケティングの基礎的な知識を幅広くカバーしています。ウェブ解析士を目指す人は、ウェブ解析士協会が運営する公式テキストや講座などを活用して、試験対策を行いましょう。 参考:https://www.waca.associates/jp/course/wac/ そもそもUI/UXデザイナーの役割とは? UIデザイナー UIとはユーザーインターフェース(User Interface)の略です。一般的にユーザーとプロダクトをつなぐ接点を意味する言葉で、Webサイトやアプリでいうと、人がモノ(PCやスマホ)を操作するときに触れるアプリのデザインや画像、ボタンなど外観に関わるすべてをUIと呼びます。UIデザイナーの主な仕事内容は、アプリの各ボタンのデザインや配置を考え、年齢層・ターゲットが使いやすいように画面を設計・デザインをすることです。 ユーザーの視点に立って、使いやすさやデザイン性の高いUIを実現することが求められる職種だと覚えておきましょう。 UXデザイナー UXとはユーザーエクスペリエンス(User eXperience)の略です。プロダクトやサービスを通じて得られるすべてのユーザー体験を示す言葉で、Webサイトやアプリでいうと、サイトやアプリを通じて得た全ての体験(登録〜購入までなど)をUXと呼びます。UXはUIを含めたすべての顧客体験を示します。 そのため、多くの企業ではUIデザイナーとUXデザイナーを区別せずに、同時に担うパターンが多いです。UIはPhotoshopやIllustratorなどのデザインスキルや知識が、UXはHCD(人間中心設計)やマーケティングなど多岐に渡る知識が必要とされるため、常に新しい情報を取り入れるなどの勉強が必要になります。 UI/UXデザイナーに必要なスキル UI/UXデザイナーがどういった仕事なのか分かったところで、UI/UXデザイナーに必要なスキルについて解説していきます。UI/UXデザイナーに必要なスキルはおもに、次の4つです。 コミュニケーション能力 探究心 デザインスキル SEOに関する知識 UI/UXデザイナーとして市場価値を高めていきたいのであれば、これらのスキルを優先的に伸ばしましょう。1つ1つのスキルについて詳しく解説していきます。 コミュニケーション能力 コミュニケーション能力はあらゆる職種において必要とされる能力ですが、UI/UXデザイナーにとっても同様に重要な能力です。どんなに優れたデザインを生み出すことができても、そのアイデアを他人に上手く伝えられなくては、デザイン案が通らなくなってしまいます。 また、UI/UXデザイナーはデザイン案をコーダーやプログラマーに共有して、デザイン通りにコーディングしてもらうように指示を出さなくてはいけません。コミュニケーション能力が欠けていると、自身が思い描いたものとは異なるものが出来上がってしまう可能性もあるのです。 探究心 UI/UXデザイナーには、強い探究心も求められるでしょう。ユーザーが「使いやすい」「面白い」と思うデザインは、時代とともに常に移り変わっていくものです。そのため、UI/UXデザイナーは常にデザインのトレンドを追いかけて理解しておく必要があります。そのうえで、トレンドをいかに取り入れるかを検討しなくてはいけません。 そのためにも強い探究心を持ち、柔軟に受け入れながら自分の物にしていく姿勢が大切です。Web業界は変化が激しいと言われており、トレンドの移り変わりもスピーディであるため、UI/UXデザイナーに転職後も勉強を継続する姿勢が求められるでしょう。 デザインスキル UI/UXデザイナーにとって、デザインスキルは核となるものです。UI/UXデザイナーに転職する際は、これまで制作したWebサイトなどをまとめたポートフォリオを提出する場合がほとんどであり、面接官は制作物を通じて求職者のデザインスキルを審査します。UI/UXデザイナーを目指すなら、まずはWebデザインの基礎を学ばなくてはいけません。 また、PhotoshopやIllustratorなどのWebデザインツールも使いこなせる必要があります。デザインスキルは独学でも習得可能ですが、独学が思うように進まない場合、UI/UXデザイナーやWebデザイナーを目指す方向けの学習スクールに通うのもおすすめです。学習スクールでは先生から1からデザインの基礎を教えてくれるうえに、カリキュラム内で制作した自主制作物をポートフォリオとして面接時に提出できます。 SEOに関する知識 UI/UXデザイナーはSEO対策の知識を持っていた方が有利です。SEO対策とは、Googleを始めとする検索エンジンの評価を最大化するために取る戦略のことです。検索エンジンに評価されれば検索結果の上位に表示されやすくなり、それが来訪者数や売上数アップに繋がります。UI/UXの変更によって検索エンジンからの評価が変動することもあるため、SEO対策UI/UXとも密接に関わっているのです。そのため、UI/UXデザイナーはWebマーケターとも相談しつつ、検索エンジンからの評価を高めるためのデザインを検討しなくてはいけません。 テクフリでフリーランス案件を探してみる UI/UXデザイナーが資格を取得するメリット UI/UXデザイナーが資格を取得するメリットは多いです。資格は自身のスキルを客観的に証明するものであり、また、資格取得のために勉強することでさらなるスキルアップにもつながります。UI/UXデザイナーが資格を取得するメリットとして、ここでは以下の3つを紹介します。 UI/UXの知見を深められる 自身のスキルを証明できる 転職において有利になる UI/UXデザイナーを目指している人は、今回紹介するメリットを参考に、資格取得を検討してみましょう。 UI/UXの知見を深められる UI/UXデザイナーは、ユーザーの使いやすさや満足度を追求して、Webサイトやアプリなどのデザインや機能を設計する職種です。そのため、UI/UXに関する知識やスキルは、UI/UXデザイナーにとって欠かせません。資格を取得することで、UI/UXに関する基礎知識から応用的な知識まで体系的に学べます。また、資格取得のための勉強や試験を通して、UI/UXの考え方や設計方法を深く理解できます。資格取得のために勉強したことを活かして、さらなるステップアップを目指しましょう。 自身のスキルを証明できる UI/UXデザイナーはその職務内容上、仕事を探す場合には実務経験やポートフォリオが非常に重要とされる職種です。しかし、これまでの実務経験やポートフォリオを示すだけでは、自身のスキルを客観的に証明することは難しい場合もあります。特に経験の浅いUI/UXデザイナーは、十分なポートフォリオや実務経験がない場合もあるでしょう。資格を取得することによって、自身のUI/UXに関するスキルを客観的に証明できます。また、資格を取得していることは、企業やクライアントからの信頼度を高めることにもつながるでしょう。 転職において有利になる UI/UXデザイナーは、近年需要が高まっている職種です。そのため、転職市場では、UI/UXに関するスキルや経験を有するデザイナーが重宝されます。資格を取得していることは、転職においても大きなアピールポイントとなります。また、資格を取得していることで、希望する職種や企業への転職を有利に進められます。案件や求人に応募するときは資格取得をアピールして、ライバルとの差別化を図りましょう。 UI/UXデザイナーのキャリアパス Web業界は変化の激しい業界であり、その中で生き残っていくには、キャリアパスをしっかり考え今後どのスキルを取得するのがプラスになるのか考えることが大切です。そこで、UI/UXデザイナーに転職した後のキャリアパス例を紹介します。UI/UXデザイナーに転職した後の代表的なキャリアパスには、以下の2つがあります。 マネジメント職 フリーランス 以下では、それぞれについて確認していきましょう。 マネジメント職 UI/UXデザイナーのキャリアパスのひとつは、Web業界におけるマネジメント職を目指すことです。マネジメント職の代表例としては、Webディレクターが挙げられます。Webディレクターはサイト制作全体の指揮を取る責任者です。各クリエイターへ作業指示を出したり、進捗状況を管理し納期やサイト仕様の調整をしたりします。 その後のキャリアとして、ITコンサルタントを目指す道もあります。UI/UXデザイナー出身の人材は、その経験を活かしてWebサイトの集客アップに関するコンサルティングなどもできます。コンサルタントやマーケターといった立場で活躍する道もあることを覚えておきましょう。 Webマーケティングの知識を体系的に身に付けたい場合は、スクールを利用してみるのもいいでしょう。 参考:WEBMARKS フリーランス UI/UXデザイナーの中には、フリーランスのUI/UXデザイナーとして独立する人材もいます。フリーランスになれば実力次第で年収アップも狙えるため、あなたのスキルを活かして高単価案件の獲得を目指しましょう。 ただ、フリーランスのUI/UXデザイナーとして活躍するためには、まず、UI/UXデザインに関する十分なスキルと経験を身につけることが大切です。また、自分のスキルをアピールできるポートフォリオやプレゼンテーションを用意しておくことも重要です。フリーランスとして独立するには、事前の準備が必要だという点はしっかり押さえておきましょう。 近年では、Web制作自体の需要が高まっているため、フリーランスのUI/UXデザイン案件も多くあります。フリーランスのUI/UXデザイナーは、自分のスキルや経験を活かして、やりがいのある仕事をしながら、高収入を得られる職業です。この機会に、フリーランスのUI/UXデザイナーを目指してみるのも良いでしょう。 まとめ UI/UXデザイナーの資格に関して調べてみると、「資格は必要ない」といった意見もあります。しかし、UI/UXデザイナーが資格を取得すると以下のようなメリットがあります。 UI/UXの知見を深められる 自身のスキルを証明できる 転職において有利になる UI/UXデザイナーにとって資格は必須ではありませんが、資格を取得することで、自分のスキルを客観的に評価でき、キャリアアップやスキルアップの目標を立てやすくなるといえるでしょう。 様々な業界でデジタル化が加速するにつれて、UI/UXデザイナーへの需要も高まっています。特に、ハイレベルで報酬も高い案件は、企業やクライアントからのニーズレベルが高く、より高度なスキルや経験が求められます。UI/UXデザイナーの資格を取得することで、これらの案件に応募する際の競争力を高めていきましょう。 資格を取得するだけでハイレベル案件を獲得できるわけではありませんが、自身の市場価値を高めてハイレベルな案件を獲得するために役立つでしょう。UI/UXデザインを学び始める方には基礎を知るきっかけとして、また、長年活躍している方はスキルの整理/再確認として資格の取得を検討してみてはいかがでしょうか。 関連記事:UI/UXデザイナーに将来性はある?フリーランスの年収はどのくらい? テクフリでフリーランス案件を探してみる
働き方

フリーランスでも保育園は継続できる?必要書類と事前準備をまとめて解説

会社員からフリーランスとして独立する場合、既に子供がいれば保育園の継続可否は気になるところではないでしょうか。そこで本記事では会社員からフリーランスに転身した場合の保育園の継続可否や、継続するために必要な手続きについて紹介します。 フリーランス案件を探してみる フリーランスになったら保育園の継続はそもそも可能なのか? 会社員からフリーランスになったとしても、保育園の継続は可能です。 もちろん名ばかりフリーランスで受注する案件もなく開業届も提出していなければ問題はありますが、きちんとした手続きを経てフリーランスとして独立するのであれば、基本的には継続できると考えて問題はありません。 しかしフリーランスに転身することで保育園の受入れ条件から外れてくるような場合は注意が必要です。 詳細は地域や保育園ごとに異なりますが、保育園では親の就業時間についての条件を定めている場合が少なくないからです。 一般的な正社員の就業時間は月~金曜日の1日8時間勤務ですが、仮に一週間の労働時間が40時間以上あることが定められていたとしましょう。 そのような条件の保育園に子供が通園していて、一日の労働時間が6時間程度の勤務予定表を提出してしまうとその時点で保育園継続の条件から外れるリスクがあります。 その一方で入所の条件が月間60時間程度の労働であれば、1日6時間程度の勤務でも条件を満たすことになります。 また保育園は市など地方自治体ではなく民間が運営している場合もあります。 同じ地域でも運営組織によって継続条件が異なる可能性もあるため、フリーランスに転身することが決まったなら早めに利用している保育園に相談することをおすすめします。 保育園の継続で必要な書類とは? 会社員を退職してフリーランスに転身する場合、保育園を継続するためにはいくつかの書類を準備して提出しなければいけません。 では次にフリーランスに転身して保育園を継続する場合に必要な書類を見ていきましょう。 開業届 フリーランスとして活動をスタートする場合、開業届の提出は必須ではありません。 しかし開業届を提出することによってフリーランスとしての活動を開始した日付が明確になり、保育園への説明もやりやすくなるというメリットがあります。 また地域や保育園によってはフリーランスには開業届の提出を求めてくる場合があります。 会社員から転身してフリーランスになるなら、開業届の提出についても検討することをおすすめします。 退職証明書 会社員からフリーランスに転身する際は、退職したことの証明として退職証明書の提出を求められることもあります。 しかし具体的にどのような項目が必要になるのかは、地域や保育園によって異なるため提出を求められた際は、具体的に必要な項目についても確認しておきましょう。 勤務実績を証明する書類 フリーランスとして常勤で勤務するなら、タイムカードの写しなどで勤務実績を提出できます。 デザイナーやライターなど勤務時間ではなくプロジェクト単位で仕事をしている場合、タイムカードはないかもしれませんが契約書の写しなどでも勤務実績の証明につながります。 勤務実績の証明が求められた際は、具体的にどのような書類が必要になるのか確認しておくことが大切です。 保育園へ提出する変更届 添付に必要な書類を準備できたら、保育園に変更届を提出しましょう。 変更届は保育園事や自治体ごとに用意されたフォーマットに従って作成します。 また変更届を提出する際は、できるだけ担当の先生とコミュニケーションをとってフリーランスとしての働き方の詳細を伝えておくことが大切です。 なぜならフリーランスはまだまだ新しい働き方であり、担当者によっては理解をするのに時間がかかる可能性があるからです。 そして一般的に会社員は安定している印象がありますが、フリーランスには不安定なイメージを持つ人が少なくありません。 保育園の先生からきちんと理解をしてもらうためにも、フリーランスに転身する際はコミュニケーションをとっておくことをおすすめします。 フリーランス案件を探してみる 保育園の継続に成功した場合 ~来年も大丈夫? 会社員からフリーランスに転身した場合の保育園の継続方法は前述の通りですが、保育園の継続に成功したとしても来年も同じように継続できるとは限りません。なぜならフリーランスの仕事は会社員のように常に一定の報酬があるわけではないからです。最低限保育園や自治体が定めている労働時間以上は働けるだけの案件を獲得し続けなければいけません。 また申告した労働時間や業務内容と全く違うことをしていると、保育園からの信用を損なうことにもなりかねません。大きく状況が変わらなければ基本的に心配は不要ですが、来年も引き続き保育園を利用したいならフリーランスとしての活動にも努力を怠らないことが大切です。 フリーランスとして新規に保育園に入園する場合の注意点 フリーランスとして新規に保育園に入園する場合でも、基本的に求められる提出書類は変わりません。しかし会社員と違って注意しなければならないことがあります。それが就労証明書の提出です。会社員であれば、会社に依頼すれば在籍していることの証明書類は簡単に発行してもらうことができます。 しかしフリーランスとなると、雇用されているわけではないので就労証明書はそもそも準備することができません。そこで役立つのが開業届です。開業届を提出していて既に開業していることを証明できれば、就労証明書と同じように入所審査において評価される可能性が高くなります。 ではフリーランスとして開業届を提出していない場合はどうなるのでしょうか。その場合は開業届でも就労証明書でもない、それ以外の書類で就労しているもしくは就労見込みがあることを証明する必要が出てきます。仮に複数の企業から、複数のプロジェクト案件を受注していたとしましょう。その場合は就労証明として複数の企業との契約や収入見込みの書類の提出を求められる可能性も出てきてしまいます。 そして保育園は人気があるエリアになるほど入所における審査が厳しくなるという特徴があります。特に都内は地域によっては保育園が不足しているところが少なくなりません。そういった人気エリアに住んでいる場合は、早めに保育園の申込み条件について確認しておくことも大切です。 参考として東京都品川区の保育園の「申込できる方」の条件の項目を紹介します。 “”求職活動(起業準備を含む)を継続的に行っていること“” 上記は8つほどある条件のうちの1つですが、このような条件を含む地域であれば開業届を提出する前でも審査に通る可能性も期待できます。会社員からフリーランスに転身してその後保育園への入園の予定がある場合は開業届の提出など、事前にできることは取り組んでおくことも大切です。 参考:品川区「保育園のご案内(2019年4月版)」 フリーランスとして保育園を継続するなら保育園への相談は早めにしよう ここまで紹介してきたように会社員からフリーランスに転身すると、保育園の継続のために準備しなければならない書類が多くなる可能性があります。 開業届の提出がない状態で複数のクライアント企業との取引がある場合は特に、複数枚の証明書類の提出を求められる可能性が高いといえるでしょう。 ただし具体的にどのような書類が必要になるのかはフリーランスとしての働き方も関係してくるため、最終的には聞いてみなければ分からないものです。 しかし仮に多くの書類が必要になったとしても、時間に余裕があれば計画的に必要とされる書類を用意することができます。 また時間に余裕があれば「期間までに書類が準備できないかもしれない」と不安になる必要も減らすことができます。 これからフリーランスに転身して保育園の継続を希望するなら、保育園には早めに相談することをおすすめします。 フリーランスの保育園継続についてよくある質問 フリーランスになったら保育園の継続はそもそも可能? 会社員からフリーランスになったとしても、保育園の継続は可能です。きちんとした手続きを経てフリーランスとして独立するのであれば、基本的には継続できると考えて問題はありません。しかしフリーランスに転身することで保育園の受入れ条件から外れてくるような場合は注意が必要です。 保育園の継続で必要な書類とは? 主に「開業届」「退職証明書」「勤務実績を証明する書類」「保育園へ提出する変更届」の4つが必要となる場合が多く、書類を提出する際は保育園の先生からきちんと理解をしてもらうためにも、できるだけ担当の先生とコミュニケーションをとってフリーランスとしての働き方の詳細を伝えておくことが大切です。 フリーランス案件を探してみる
Java

Javaメソッドの定義と呼び出し方【初心者にもわかりやすく解説】

Javaメソッドは、プログラムの処理を分割して整理するための重要な機能であり、可読性や保守性の向上、再利用性の実現に役立ちます。本記事では、「Javaメソッドの使い方を知りたい」、「Javaメソッド使ってプログラミングするときのポイントを知りたい」というあなたのために、Javaメソッドの基本構文や戻り値の設定方法、メソッドの呼び出し方などを分かりやすく解説します。 さらに、メソッドの応用技術であるメソッド参照やstaticメソッド、メソッドチェーンについても解説するので、経験者の人もJavaメソッドについて再確認してみましょう。 関連記事:Javaのおすすめフレームワーク13選を紹介!【2025年最新版】 フリーランスのJava案件を探してみる Javaメソッドとは Javaメソッドは、プログラムの処理を分割して整理するための機能です。ここでは、Javaメソッドの概要を解説します。 Javaメソッドの概要 繰り返しになりますが、Javaメソッドはプログラムの処理を分割して整理するための機能です。複数の文や式をまとめ、特定の処理をひとつの単位として扱います。メソッドは再利用性を高められるため、コードの冗長さを減らしてプログラムの保守性を向上させます。また、コードの可読性も向上し、プログラムの開発効率が高まる効果があるという点も特徴です。 ちなみにメソッドという概念は、Javaに限らず多くのプログラミング言語で使用されています。メソッドは、エンジニアを目指す上で欠かせない概念なのでこれを機会にしっかり覚えておきましょう。 Javaメソッドの種類 Javaメソッドの種類は、インスタンスメソッドと静的メソッドの2種類です。インスタンスメソッドは、特定のオブジェクトに属するメソッドであり、そのオブジェクトの状態を変更する処理に使用されます。一方、静的メソッドは、特定のオブジェクトに属さず、クラス自体に関連する処理に使用されます。 静的メソッドは、staticメソッドとも呼ばれるメソッドです。Javaエンジニアにとって、インスタンスメソッドと静的メソッドの違いを理解しておくことはとても重要です。今回解説した内容をしっかり覚えておきましょう。 Javaメソッドの構文 ここでは、Javaメソッドの基本構文について説明します。メソッドは、プログラムの処理を組織化し、再利用可能なコードのブロックを作成するための重要な要素です。正しい基本構文を理解し、適切にメソッドを活用しましょう。 Javaメソッドの基本構文 Javaメソッドの基本構文は、以下の通りです。 修飾子 戻り値の型 メソッド名(引数のリスト) { // メソッドの処理 return 戻り値; } 修飾子 戻り値の型 メソッド名 引数のリスト メソッドの本体処理 修飾子はメソッドのアクセスレベルを指定し、戻り値の型はメソッドが返す値のデータ型を示します。メソッド名はメソッドを一意に識別するための名前です。引数のリストはメソッドに渡すデータを指定します。 そして、メソッドの本体では具体的な処理が記述されます。最後に、return文を使用してメソッドの結果を返すという構成が、メソッドの基本構文です。 Javaメソッドの戻り値の型と引数の設定方法 Javaメソッドでは、戻り値の型と引数の設定が重要です。戻り値の型はメソッドが返す値のデータ型を指定します。void型を指定すると、メソッドは戻り値を返さないという意味です。 引数はメソッドに渡すデータであり、複数の引数をカンマで区切って指定します。メソッドを定義するとき、引数にはデータ型と引数名の両方を指定します。メソッドに引数を定義した場合、メソッドを呼び出す際には引数の値を渡す必要があるという決まりです。 Javaメソッドの定義方法と呼び出し方 ここではJavaメソッドの定義方法と呼び出し方を解説します。先ほど解説したJavaメソッドの基本構文を元に、実際にどのようなコードを書いてJavaメソッドを定義したり呼び出したりするのかを解説します。正しいメソッドの定義と呼び出し方を理解し、効果的なプログラミングに役立てましょう。 Javaメソッドの定義方法 Javaメソッドの基本構文に従って、Javaメソッドを定義してみましょう。Javaメソッドの定義例は、以下の通りです。 public returnType methodName(parameter1, parameter2, ..., parameterN) { // メソッド本体 } Javaメソッドの基本構文でも解説しましたが、Javaでメソッドを定義するには、まず修飾子(public、privateなど)を指定し、次に戻り値の型を指定します。戻り値の型がない場合はvoidを指定します。 その後、メソッド名と引数のリストを指定し、メソッドの本体を中括弧で囲んで記述するというのがJavaメソッドの定義方法です。メソッドの本体では、処理の記述や条件分岐、ループなどを行えます。 Javaメソッドの呼び出し方 Javaメソッドの呼び出し方は、以下の通りです。 objectName.methodName(parameter1, parameter2, ..., parameterN); Javaでメソッドを呼び出すには、メソッド名と引数を指定します。呼び出し元のコードで、呼び出したいメソッド名と引数の値を指定することで、対応するメソッドが実行されます。 Javaメソッドに定義した引数の型と一致する値を指定する必要がある点に注意しましょう。また、メソッドの戻り値がある場合は、呼び出し元でその値を使用できます。戻り値についてはこのあと解説します。 Javaメソッドの戻り値の受け取り方 Javaメソッドの戻り値の受け取り方は、以下の通りです。 returnType returnValue = objectName.methodName(parameter1, parameter2, ..., parameterN); Javaのメソッドの戻り値を受け取るには、メソッド呼び出しの際に変数に代入します。メソッドが戻り値を返す場合、呼び出し元ではその戻り値を受け取るための変数を用意し、メソッド呼び出しの結果を代入します。その後、受け取った値をメソッド実行後の必要な処理に使用するという流れです。 フリーランスのJava案件を探してみる Javaメソッドの応用的な使い方 ここではJavaメソッドの応用的な使い方を解説します。今回解説する応用的な使い方は、以下の通りです。 メソッド参照 staticメソッド メソッドチェーン プログラミング解説の入門書には出てこない内容もあるかもしれませんが、効果的なプログラミングに役立つ機能なので、しっかり押さえておきましょう。 メソッド参照 メソッド参照とは、メソッドを呼び出す際に、メソッドの名前ではなく、メソッドのオブジェクトを参照して呼び出す方法です。メソッド参照を使用すると、既存のメソッドを直接参照してラムダ式を簡潔に表現できます。 メソッド参照は「クラス名::メソッド名」の形式で表され、「a -> クラス名.メソッド名(a)」というようなラムダ式よりも簡単に書ける点が特徴です。メソッド参照により、コードの可読性と保守性が向上し、より簡潔で柔軟なプログラミングができます。 staticメソッド staticメソッドは、特定のオブジェクトに属さないメソッドです。staticメソッドは静的メソッドとも呼ばれ、インスタンス化せずにクラス自体から直接呼び出せます。通常、インスタンスメソッドは特定のオブジェクトに対して操作を行いますが、staticメソッドはオブジェクトに依存しない操作や共通の処理を実行するために使用されます。 なお、staticメソッド内ではstatic変数のみにアクセスできるという仕様に注意が必要です。staticなメソッドや変数と、インスタンスなメソッドや変数間のアクセスを間違えてコンパイルエラーになることはよくあるので、注意しましょう。 メソッドチェーン メソッドチェーンは、複数のメソッド呼び出しを連結して一つの式として表現する手法です。例えばよく見かける以下の標準出力処理も、メソッドチェーンを使用しています。 System.out.println(“Hello World!”); Systemクラスのoutフィールドが持つprintlnというstaticメソッドを呼び出すという意味です。Javaでは、メソッドの戻り値がオブジェクト自身であるような場合にメソッドチェーンを利用できます。メソッドチェーンを使用することで、コードがスッキリとした記述になります。 ただし、メソッドチェーンを使用する際には、各メソッドが正しく結果を返すように注意が必要です。Javaの処理でメソッドを使用するときは、リファレンスを見て、メソッドの仕様を確認してから使用しましょう。 Javaのメソッド設計におけるポイント ここでは、Javaのメソッド設計におけるポイントを解説します。Javaのメソッド設計におけるポイントは、以下の通りです。 引数と戻り値を適切に設計する 適切な命名規則に従う 他の設計者が理解しやすいように設計する それぞれについて詳しく解説します。 引数と戻り値を適切に設計する メソッドの引数は、そのメソッドが必要とするデータや情報を受け取るための手段です。引数の数や型を適切に設計し、メソッドが必要なデータにアクセスできるようにします。また、戻り値はメソッドが処理の結果として返す値です。メソッドの目的や要件に応じて適切な戻り値の型を設定し、呼び出し元が結果を適切に利用できるようにします。引数と返り値を適切に設計して、メソッドの処理を明確にし、コードの可読性を向上させましょう。 適切な命名規則に従う Javaでは、メソッド名の命名には特定の規則があります。メソッド名は英字で始まり、英数字やアンダースコアを組み合わせて命名します。また、メソッド名はわかりやすく、その役割や目的を表現するようにすることが重要です。 Javaの命名規則では、メソッド名の最初の英単語は小文字で始め、複数の単語を結合する場合はキャメルケース(camelCase)を使用します。例えば、「calculateSum」や「printMessage」などのように命名します。 また、メソッド名は予約語や既存のクラス名と重複しないように定義する必要がある点にも注意しましょう。メソッド名や引数名、変数名などの命名には適切な規則に従うことが重要です。命名規則に沿って、誰が見ても分かるような名前をつけるように心がけましょう。 他の設計者が理解しやすいように設計する メソッドを設計する際には、他の開発者がコードを理解しやすくすることも考慮しましょう。コメントやドキュメンテーションを適切に記述し、メソッドの目的や動作を説明します。また、メソッドの処理やフローが明確で、冗長な部分がないように設計することも重要です。これにより、他の開発者がメソッドを理解しやすくなり、コードの保守性も向上します。 まとめ Javaメソッドの基本構文や戻り値の設定方法、引数の設計、命名規則などについて解説しました。さらに、メソッドの応用技術としてメソッド参照、staticメソッド、メソッドチェーンについても触れました。 正しいメソッドの定義と呼び出し方を理解して、適切な設計により保守性や可読性を高めることが重要です。今回解説した知識を実践に活かして、より効率的なプログラミングを実現しましょう。 フリーランスのJava案件を探してみる
freelance
データサイエンティスト

データサイエンティストの平均年収は?年齢別の年収データも紹介

データサイエンティストとは膨大なデータを収集・分析することで、ビジネスに活用する知見を得て、企業の意思決定を手助けする仕事です。 本記事ではデータサイエンティストの平均年収を年齢別などにまとめ、求められるスキルについても解説します。データサイエンティストとしてのキャリアに興味がある方はぜひ参考にしてください。 データサイエンティスト案件を探してみる データサイエンティストの平均年収 データサイエンティストの平均年収について、年齢や会社規模別に詳しく見ていきましょう。 全体平均 データサイエンティストの平均年収は約655万円で、推移は440万円から870万円と言われています。国税庁の民間給与実態調査によると、令和元年における日本全体の平均年収は約436万円となっています。 このことから、データサイエンティストの年収は、日本全体の平均よりも200万円近く高いことがわかります。さらに、年収1000万円以上を提示している企業も多く存在するので、スキルが高いほど多くの収入が期待できます。 専門的な知識やスキルが必要で、重大な意思決定の場面で、データに基づいた合理的判断を求められるデータサイエンティストの仕事を考えると、このような結果は当然と言えるでしょう。 また、40代のデータサイエンティストの平均年収を男女別に見てみると、男性の平均が約760万円、女性の平均は約544万円となっていて、男性の方が200万円以上高くなっています。 年齢別 年齢別に見ていくと、データサイエンティストの年収は平均約350万円からスタートし、年収の推移が一番高くなる50代後半から60代では約800万円に到達します。 年齢 年収 20代前半 約350〜400万円 20代後半 約400〜470万円 30代前半 約400〜520万円 30代後半 約480〜600万円 40代前半 約530〜650万円 40代後半 約600〜750万円 50代前半 約680〜800万円 50代後半 約700〜800万円 60代 約450〜800万円 また、年代別では、20代の平均年収が約404万円、30代の平均が約511万円、40代の平均が約655万円、50代の平均が約786万円となっています。 年代 年収 20代 約404万円 30代 約511万円 40代 約655万円 50代 約786万円 企業の規模による違い 企業規模の違いから見ていくと、大企業で働くデータサイエンティストの平均年収は約760万円、中企業の平均は約629万円、小企業の平均は約570万円となっています。 会社の規模が大きくなればなるほど平均年収も比例して高くなっている点では、多くの他の職業と同じであると言えるでしょう。 アメリカにおけるデータサイエンティストの年収 海外のデータサイエンティストの平均年収は日本と比べ、どのようになっているのでしょうか。 前述したように、日本全体の平均年収は約436万円で、データサイエンティストの平均は約655万円です。 アメリカ全体の平均年収は約430万円となっていて、全体の平均年収では日本とアメリカに大きな差はありません。 しかし、アメリカのデータサイエンティストの平均年収は約1200万円となっており、日本の平均の2倍近くにまでなっています。 アメリカでデータサイエンティストは「最も稼げる職業」と言われています。また、アメリカ全土の職業の中で、雇用満足度や平均給料などの要素から比較し、人気な仕事を選ぶ「ベストジョブ」に4年連続で入賞しています。 これらのことから、アメリカでデータサイエンティストは、日本に比べて需要が高く、人気であることがわかります。 日本とアメリカの間でこれほど大きな差が生まれているのは、アメリカの方が日本よりもデータの分析や活用がビジネスにとって重要だと考えているからです。もちろん、日本でもデータの分析や活用は重要だと考えられていますが、アメリカの方がその傾向がより強くなっています。 さらに、日本と比べて、海外の方が転職をする人が多く、人材の流動性は高いです。そのため、多くの企業が優秀なデータサイエンティストを確保するために、他の企業よりも高い年収を提示していることも、年収が高くなる理由の一つです。 参照元:https://www.glassdoor.com/blog/best-jobs-in-america-2019/ データサイエンティストの年収が高い理由 ここまで、データサイエンティストは高収入な職業であることを説明してきました。 なぜデータサイエンティストの給料は高収入なのでしょうか。ここから見ていきましょう。 求められるスキルが高い データサイエンティストが高収入な理由の一つ目は、求められるスキルが高いためです。データサイエンティストは、膨大なデータを収集・分析し、そこから活用する必要があります。データを正確に解析するためには、統計学の知識が必要です。 また、データ分析だけでなく、「どの課題に取り組むべきなのか」や「分析したデータをどのように活用し、課題を解決するべきか」などのように、ビジネス的な観点で物事を考える必要もあるので、ビジネススキルも必要です。 さらに、データ収集やデータ統合などの処理では、データ解析言語と呼ばれる「R言語」や「Python」のプログラミングの知識も必要です。 これらの知識は専門性が高く、全てを独学で学ぶことは非常に困難です。さらに、日本では他の国に比べ、データサイエンティストに必要な知識を網羅的に学べる学校や十分な教育体制が整っている企業が少ないのが現実です。 求められるスキルが高く、必要な知識を身につけられる場所も多くないことから、高いスキルを持っているデータサイエンティストは非常に少なく、需要が高くなっています。 そのため、企業が優秀な人材を確保するためには、よりよい条件を提示する必要があるので、データサイエンティストの収入が高くなっています。 データ分析などの需要が伸びている 二つ目の理由は、データ分析など需要が伸びている分野なためです。 近年、企業が保有するデータの量は年々増加していて、会社によってはビッグデータと呼ばれるほど膨大なものになっています。情報量があまりにも多く、知識のない人が扱えるレベルよりも遥かに大きくなっています。 そのため、膨大なデータを分析するには、データ分析の知見をもつ専門家が必要不可欠です。その専門家こそがデータサイエンティストなのです。 今日のビジネスシーンにおいて、データの分析や活用、機械学習のニーズは高まる一方であり、いまや企業にとってなくてはならないものになっています。 優秀なデータサイエンティストを確保できるかどうかが、直接会社の利益につながると言っても過言ではなくなってきています。 そのため、データサイエンティストの需要は高まっており、求人の数もどんどん増えてきています。 企業が、数少ない優秀なデータサイエンティストから人材を確保するには、よりよい条件を提示する必要があります。その結果、高い年収を提示する企業が多く、データサイエンティストの収入が高くなっています。 データサイエンティストはフリーランスの方が稼げる? ここまで、データサイエンティストが高収入であることを説明してきました。 ここからは、正規雇用とフリーランス、どちらのデータサイエンティストの方が稼げるのかを見ていきましょう。前述したように、正規雇用のデータサイエンティストの平均年収は約655万円で、単純に12で割った場合、月収は約55万円になります。 テクフリで紹介中の案件情報を参考にすると、フリーランスの場合、平均単価は1ヶ月約93万円となっており、年収換算すると約1120万円になります。この結果から見ると、フリーランスの方が正規雇用よりも2倍近く稼げることがわかります。 フリーランスの場合、持っているスキルによって収入が大きく変わるので、一概にいうことはできません。しかし、それを加味した上でも、フリーランスでは単価が高い案件が多く存在するので、フリーランスの方が比較的多く稼ぐことができるでしょう。 テクフリでフリーランス案件を探してみる データサイエンティストに必要なスキルは? データサイエンティストになるには、専門的な知識やスキルが必要であることは、ご理解いただけたかと思います。 では、実際にデータサイエンティストになるためには、具体的にどのようなスキルが必要なのでしょうか。詳しく見ていきましょう。 統計に関する知識 データサイエンティストに必要なスキルとしてまず挙げられるのは、統計に関する知識です。 前述したように、データサイエンティストは大量のデータを収集・分析し、そこから活用する必要があり、データを正確に解析するためには、統計学の知識が必要です。大きく分けて、「数学」「データ分析手法」「データ分析ツール」の3つのスキルが必要です。 数学 データ分析の共通語は数学となっていて、データ分析に関するほぼ全ての本が数学の知識がある前提で書かれています。 そのため、最低でも高校数学までの知識、特に確率・統計、微分積分、行列の分野の知識が必要です。また、できるのであれば、大学初級レベルの解析学、線形代数学の知識もあった方がいいでしょう。 データ分析手法 データ分析では、データ統計処理などの分析モデルを作成し、それに従って分析を進めていきます。そのため、データマイニング手法(分析に適した統計処理手法や、構造化されたデータベースから情報を抽出し、自動的に傾向やパターンを発見する分析手法)について理解しておくことが必要です。 データ分析には多くの手法があり、データの種類や必要とする分析結果によって、使うデータ分析手法が変わります。 そのため、「自らが必要とする結論を出すために、どのような分析手段をつかう必要があるのか」などを知っておく必要があります。 データ分析ツール 膨大なデータを扱うデータ分析では、途中計算が非常に複雑なため、基本的に分析に特化した分析ツールを用いて分析を行います。そのため、データ分析手法だけでなく、データ分析ツールの手法についての知識も必要となります。 基本的には、Excelの分析手法を用いて分析できますが、より専門的なデータ分析が必要な場合は、IBM社の「SPSS」が活用するといいでしょう。 プログラミングスキル データサイエンティストには、PythonやR言語などのプログラミングスキルも求められます。前述のように、大規模なデータセットを効率的に処理したり、複数のデータを統合するためにプログラミングスキルが必要となります。 Pythonは、主に機械学習やAI開発に使われていて、理解することが比較的簡単で、初心者でも学習しやすい言語とされています。R言語は、学術や研究向けの統計解析言語として開発されたもので、データの分析や解析に非常に優れている言語です。しかし、Pythonに比べて専門性が高く、日本語の情報が少ないため、初心者の方や英語が苦手な方には難しい言語かもしれません。 Pythonhは初心者向けなのに加え、WEBアプリの開発などにも使われているので汎用性も非常に高いです。そのため、どちらの言語を勉強するか迷った場合、Pythonから学習するのがいいでしょう。 データベースに関する知識 データベースに関する知識も必要とされます。データサイエンティストが扱う膨大なデータは、基本的にデータベースに格納されています。データサイエンティストは、データベースから効率的にデータ収集やデータ処理をするために、分析基盤や環境構築をする必要があります。 膨大なデータを扱うため、データ設計が適切でないと、サーバーに大きな負担がかかってしまい、最悪の場合サーバーが止まってしまいます。サーバーに大きな負荷をかけないためにも、効率的なデータ設計をする必要があります。 膨大なデータの処理知識 膨大なデータの処理知識も、データサイエンティストには求められます。前述の通り、データサイエンティストはビッグデータと呼ばれる膨大なデータを扱うことになるため、専門的な知識やスキルが必要となります。 また、ビッグデータは今後さらに発展が期待されている技術領域なので、業界の動向を常に追いかけ、最新の情報や技術をテェックする必要があります。 データサイエンティストになるには? ここまで説明したように、データサイエンティストになるには、専門的な知識やスキルを身につける必要があります。そのため、未経験からいきなりデータサイエンティストになることは難しいでしょう。 まずは、データサイエンティストに必要な統計学やデータ分析などの専門知識を大学や専門学校で学びます。そこから、新卒で企業に入社し、経験を積んでいきましょう。 しかし、データサイエンティストは専門性や求められるスキルが非常に高いので、新卒からいきなり配属されるとは限りません。 そのため、まずは、データベースエンジニアやデータマイニングエンジニアなどの日常的に膨大なデータを扱う機会が多い職種で働き、実務経験を積んでからデータサイエンティストへの転職を目指した方が現実的でしょう。 よくある質問 データサイエンティストの平均年収は? データサイエンティストの平均年収は650万円程度で、推移は440万円から870万円と言われています。 データサイエンティストが高収入な理由は? データサイエンティストが高収入な理由は、「求められるスキルが高いため」「データ分析など需要が伸びている分野なため」の2つが挙げられます。 データサイエンティストに必要なスキルは? データサイエンティストになるために必要なスキルは大きく分けて、「統計に関する知識」「プログラミングスキル」「データベースに関する知識」「膨大なデータの処理知識」の4つです。 まとめ 今回は、近年需要が増えてきている「データサイエンティスト」の年収や必要なスキルについてまとめました。 データサイエンティストは、膨大なデータを収集・分析し、活用することが求められます。膨大なデータの収集・分析には専門的な知識やスキルが必要となります。求められるスキルが高い反面、他の職業と比べて年収は高い傾向があります。 この記事を通して、データサイエンティストに対する理解を深めるために、少しでもお役に立てましたら幸いです。 テクフリでフリーランス案件を探してみる
インフラエンジニア

インフラエンジニアとは?仕事内容や年収・キャリアパスなどを徹底解説

インフラエンジニアとは インフラエンジニアとは、企業や組織のITインフラを支えるIT基盤の設計・構築・運用・保守を担当する技術者です。IT基盤とは、サーバー、ネットワーク、データベース、セキュリティなど、システムを稼働させるために必要な要素の総称です。 インフラエンジニアはこれらの要素を適切に組み合わせて、安全かつ安定的に稼働するITシステムを構築・運用・保守することが求められます。近年、IT化の進展に伴い、インフラエンジニアの需要は高まっています。 また、クラウドやAIなどの新しい技術の登場により、インフラエンジニアに求められるスキルや知識も変化しています。本記事ではインフラエンジニアの仕事内容やおすすめの資格などについて詳しく解説します。 テクフリでインフラ案件を探してみる インフラエンジニアの仕事内容 インフラエンジニアの仕事内容は、大きく分けて以下の4つに分けられます。 設計 構築 システム監視 運用・保守 それぞれについて詳しく見ていきましょう。 設計 設計とは、システムの要件を踏まえて、IT基盤の構成や仕様を決める工程です。インフラエンジニアは、システムの目的や利用者、予算などの要件をヒアリングし、それらを満たすIT基盤を設計します。設計では、以下の要素を検討する必要があります。 ハードウェア構成 ソフトウェア構成 ネットワーク構成 セキュリティ対策 構築 構築とは、設計に基づいて、IT基盤を実際に実現する工程です。インフラエンジニアは、サーバーやネットワーク機器などのハードウェアの導入、ソフトウェアのインストールや設定、テストなどをします。構築の作業例は、以下のとおりです。 ハードウェアの導入 ソフトウェアのインストール ネットワークの構築 セキュリティ対策の実施 テスト システム監視 システム監視とは、ITシステムの状態を常時監視し、異常が発生していないかを確認する工程です。インフラエンジニアは、ログやメトリックなどの情報を収集・分析し、異常を検知した場合には、迅速に対応します。システム監視では、具体的に以下の作業を行います。 ログの収集・分析 メトリックの収集・分析 異常検知 対応 運用・保守 運用・保守とは、ITシステムを安定的に稼働させるために行う業務です。インフラエンジニアは、システムのアップデートやセキュリティ対策、故障対応などをします。運用・保守の作業例は、以下のとおりです。 システムのアップデート セキュリティ対策の実施 故障対応 パフォーマンス改善 インフラエンジニアに向いている人 ここではインフラエンジニアに向いている人の特徴をいくつか紹介します。以下のような人は、インフラエンジニアに向いている傾向があります。 細かい作業が得意である コミュニケーション能力が高い 新しい技術キャッチアップできる これからインフラエンジニアになりたい人向けに、どのようなスキルを身に着けたら良いのかという観点でも紹介するので、ぜひ参考にしてみてください。 細かい作業が得意である インフラエンジニアの仕事は、サーバーやネットワークなどのハードウェアやソフトウェアの設定や構築など、細かい作業が求められます。そのため、細かい作業が得意な人や、正確さを求められる仕事にやりがいを感じる人には向いている職種です。インフラエンジニアに求められる細かい作業の具体例は以下のとおりです。 サーバーの設定 ネットワークの設定 データベースの設定 ソフトウェアのインストール セキュリティ対策の設定 これらの作業は、1つのミスによって問題が生じるとシステムの安定稼働に大きな影響を与えてしまうため、慎重かつ丁寧に行う必要があります。これらの設定をひとつひとつ丁寧に正確に行える人は、インフラエンジニアに向いていると言えるでしょう。 コミュニケーション能力が高い インフラエンジニアは、システムの設計や構築などの際に、営業や開発などの他部署と連携する機会が多くあります。そのため、コミュニケーション能力が高い人や、チームで仕事をすることにやりがいを感じる人には向いている職種です。コミュニケーション能力として重要なポイントは具体的に以下のような点です。 相手の話をよく聞く 自分の考えをわかりやすく伝える 相手の意見を尊重する インフラエンジニアは、システムの要件をヒアリングしたり、トラブルの原因を調査したりする際に、相手とコミュニケーションをとる必要があります。そのため、相手の話をよく聞き、自分の考えをわかりやすく伝えるスキルが重要だと覚えておきましょう。 新しい技術をキャッチアップできる IT業界は、常に新しい技術が登場しています。インフラエンジニアとして活躍するためには、新しい技術をキャッチアップし、常に最新の知識やスキルを身につけることが重要です。インフラエンジニアに向いている人は、新しいことに積極的に取り組める人です。また、学習意欲や向上心も大切になってきます。新しい技術をキャッチアップできる人は、以下のスキルが高い傾向にあります。 情報収集力 学習意欲 応用力 インフラエンジニアは、新しい技術に関する情報収集を常に行う必要があります。新しい技術を学ぶ意欲と、学んだ技術を応用する力が重要だと覚えておきましょう。 インフラエンジニアにおすすめの資格 インフラエンジニアとして活躍するためには、以下の資格がおすすめです。 基本情報技術者試験/応用情報技術者試験 CCNA/CCNP 未経験の方も資格の勉強をきっかけに自身の知識の幅を広げられますので、参考にしていただければ幸いです。以下ではそれぞれの資格について詳しく紹介します。 基本情報技術者試験/応用情報技術者試験 基本情報技術者試験は、ITに関する基礎的な知識と技能を問う国家試験です。応用情報技術者試験は、基本情報技術者試験の上位資格であり、より高度なITに関する知識と技能を問う国家試験です。 どちらの試験も、インフラエンジニアとして必要となる基礎的な知識と技能を身につけるのに役立ちます。特に、基本情報技術者試験は、インフラエンジニアとしてのキャリアをスタートさせるための第一歩としておすすめの資格です。まずは基本情報技術者試験の合格を目指してみましょう。 応用情報技術者試験は、基本情報技術者試験に合格した上で、より高度な知識と技能を身につけたい人向けの資格です。インフラエンジニアとして、より幅広い業務を担当したい場合は、応用情報技術者試験の取得を目指しましょう。 CCNA/CCNP CCNAは、シスコシステムズが認定するネットワークエンジニアの国際認定資格です。CCNPは、CCNAの知識をより深めた上で、より高度な技術を身につけた人を認定する資格になります。インフラエンジニアとして活躍するためには、ネットワークの知識と技術を身につけることが重要です。 そのため、CCNAは、インフラエンジニアを目指す人にとって、まず取得しておきたい資格と言えます。CCNPは、CCNAに合格した上で、より高度なネットワーク技術を身につけたい人向けの資格です。インフラエンジニアとして、ネットワークの設計や構築を担当したい場合は、CCNPの取得を目指しましょう。 インフラエンジニアのキャリアパス 経験を積む インフラエンジニアとしてのキャリアをスタートしたら、まずは経験を積むことが重要です。具体的には、サーバーやネットワークの構築、運用・保守などの業務を担当し、スキルを磨いていきましょう。経験を積むためには、まずはインフラエンジニアとして働ける会社に就職する必要があります。就職する際には、インフラエンジニアとしての実務経験が豊富な企業を選ぶとよいでしょう。 また、インフラエンジニアとして働きながら、資格取得に挑戦するのもおすすめです。基本情報技術者試験やCCNAなどの資格を取得することで、自分のスキルを客観的に証明できます。現場での経験を積んで、スキルや実績を積み上げていきましょう。 スペシャリストになる インフラエンジニアとしての経験を積んだあとは、スペシャリストになる選択肢があります。ある特定の分野のスキルを深め、スペシャリストを目指すキャリアパスです。スペシャリストとしては以下のような分野があります。 サーバーエンジニア ネットワークエンジニア データベースエンジニア 自分の興味や適性に応じて、専門分野を決めましょう。スペシャリストになるためには、専門分野の知識や技術を深めるための勉強や研修を継続することが重要です。また、業界の最新動向を常に把握することも大切です。常に新しい技術を学び続け、スキルアップを図ることで、スペシャリストとして活躍できるでしょう。 マネジメント職に就く インフラエンジニアのマネジメント職とは、インフラエンジニアチームやプロジェクトをマネジメントする仕事です。プロジェクトマネージャーとしてチームやプロジェクトを率いて活躍することができ、リーダーシップやコミュニケーション能力などのスキルが求められます。 マネジメント職に就くためには、インフラエンジニアとしての実務経験を積んだ上で、マネジメントに関するスキルを身につける必要があります。具体的には、プロジェクトマネジメントやリーダーシップに関する研修やセミナーを受講するとよいでしょう。 インフラエンジニアの年収 求人ボックスによると、インフラエンジニアの平均年収は520万円です。参考:「求人ボックス」 ただ、実際の年収はエンジニアの経験やスキルによって大きく異なります。目安として、以下のようにステップアップしていくとイメージしておくとよいでしょう。 新卒の初任給は約350万円から400万円程度 中堅になると約500万円から600万円程度 上級になると約600万円から800万円程度 新卒と中堅の差はインフラに関するスキルや経験の違いです。この段階では、基本的な知識と技術を身につけることが重要であり、資格を取得することで、年収アップにつながる可能性があります。また、中堅と上級の差は、プロジェクトマネジメントやコンサルタント力です。上級エンジニアとしてより高い年収を得るためには、マネジメントやコンサルティングのスキルを身につけることが重要になります。 インフラエンジニアは、IT業界の根幹を支える重要な職種です。常に新しい技術が生まれており、スキルアップが求められる職種でもあります。努力次第で年収アップも可能な職種なので、常にスキルアップしていく意欲を忘れないようにしましょう。 インフラエンジニアの将来性や年収については、こちらの記事でも解説しております。 インフラエンジニアに需要と将来性はある?必要なスキルと合わせて解説 まとめ インフラエンジニアはインフラ構築などの技術的なところから、プロジェクトマネジメントやコンサルタントまでさまざまなキャリアパスがあります。できることが増えるにつれて年収も増える傾向にあります。 インフラエンジニアは、クラウドやAIなどの技術革新によって今後需要も拡大していく職種です。今回紹介した内容を参考に、インフラエンジニアになるための一歩を踏み出してみましょう。 テクフリでフリーランス案件を探してみる
サーバーサイドエンジニア

サーバーサイドエンジニアにおすすめの資格6選!必要なスキルと合わせて解説

WebページやWebアプリに関するサーバー側の処理を担当するのがサーバーサイドエンジニアです。データベースに関する知識や技術からRuby、Python、PHPといったプログラミング言語のスキルが求められます。IoTやAI、機械学習といった分野の開発に携われる点も魅力です。 本記事ではそんなサーバーサイドエンジニアに役立つ資格についてご紹介します。資格の取得には、客観的なスキルの証明や、体系的な知識の習得などさまざまなメリットもあります。 サーバーサイドエンジニアとしてさらなるレベルアップを目指す手段の一つとして、ぜひ参考にしてみてください。 テクフリでサーバーサイドの案件をチェックしてみる サーバーサイドエンジニアに役立つ資格は? 現在、サーバーサイドエンジニアは需要も多く、多くの言語を身に付ける必要があります。そのため資格はスキルの証明になります。 しかしサーバーサイドエンジニアには特定の資格は必要ありません。一方で、資格取得は大きなアピールポイントになり、転職や社内で社内での人事評価にもプラスの材料となるといえるでしょう。またITの勉強をする際のゴールを定めるのに役に立ちます。 IT資格についてご紹介します。IT資格には国が認定しているものと、民間の企業が認定しているものがあります。前者を「国家資格」と呼び、後者は「ベンダー資格(民間資格)」と呼びます。 国家資格 国家資格として存在しているのは、独立行政法人情報処理推進機構(IPA)が実施する13個の資格のみです(情報処理技術者試験が12種、情報処理安全確保支援士試験が1種)。これ以外の資格は、すべてベンダー資格と呼ばれます。まずはサーバーサイドエンジニア に有効な国家資格を3つ取り上げていきます。 基本情報技術者試験 サーバーサイドエンジニア だけでなくITエンジニアを目指す人にとっての登竜門となるのが基本情報技術者試験です。ITを利活用するすべての人向けの資格がITパスポート試験なら、ITエンジニアを目指すすべての人向けの資格が基本情報技術者試験となります。 基本情報技術者試験 応用情報技術者試験 すでにI実務経験を積んだ人向けの資格が応用情報技術者試験です。知識や技術の「応用」に重点を置かれ、開発力だけではなくマネジメント力や経営に関する知識も問われます。 サーバーサイドエンジニアとしての仕事が未経験という人や初心者にはやや難しい資格ですが、スキルアップのために取得するのにはおすすめです。難易度は中程度と言えるでしょう。 応用情報技術者試験 データベーススペシャリスト試験(DB) データベースに関する知識や技術を求められるサーバーサイドエンジニア ですが、データベーススペシャリスト試験(DB)は、データベースエンジニアとして活躍したい人向けの資格です。 データベースに関する専門的な知識を問うため難易度は高くなりますが、それだけ転職や人事評価の際には高く評価されるといえます。 データベーススペシャリスト試験 民間資格 次に民間資格であるサーバーサイドエンジニアに有効なベンダー資格を3つ取り上げていきます。 Linux技術者認定試験 カナダに本部を置く「LPI」の日本支部が運営するLinux技術者認定試験(LPIC)は、Linux技術者として一定のスキルを身につけていることを認定する世界共通基準のベンダー資格です。 LPICには、レベル1、レベル2、レベル3と3つのグレードが用意されています。グレードが高まるにつれて難易度が高まり、より高度なスキルを持ったエンジニアとして評価されるようになります。 日本におけるLPIC試験は、これまでLPI-Japanによって行われてきましたが、2018年8月にLPIの日本支部が設立されたことにより、運営母体が変更になったという経緯があります。 LPICは世界中で受験されている資格の1つで、これまでに53万人以上の受験者がいます。そのうち合格者は18万人以上。公正な試験として国際的にも認められており、200カ国以上のエンジニアが受験しています。 LPICには、レベル1、レベル2、レベル3と3つのグレードが用意されています。グレードが高まるにつれて難易度が高まり、より高度なスキルを持ったエンジニアとして評価されるようになります。 Linux技術者認定「LinuC(リナック)」 オラクルマスター データベースの分野で圧倒的なシェアを誇るオラクル社の製品について、知識や技術を問うのがオラクルマスターです。「Bronze」「Silver」「Gold」「Platinum」の4つの難易度にわかれてます。まず「Bronze」に合格し、「Silver」に挑戦しましょう。 Silver以上の資格はこちらも世界共通資格ですので、海外の企業でも高く評価されやすくなるでしょう。 オラクルマスター CCNA(Cisco Certified Network Associate) 世界最大手のCisco社のネットワーク関連製品に関する知識・技術を問うのがCCNAと呼ばれる資格です。Cisco社の製品知識だけではなく、ネットワーク技術全般の知識も求められます。 資格は細分化されており、自分の目的に合ったものを選んで受験しましょう。 CCNA 認定 まとめ サーバーサイドエンジニア にってってIT資格はシステム開発やプログラミングを行う現場からしても、大きなメリットがあります。なぜなら、資格を取得する過程で効率良く知識を身につけることができるからです。 また資格の需要についても知っておく必要があります。その資格を企業が求めているのかについては、HPで事業内容をチェックしてみてください。 テクフリでフリーランス案件を探してみる
働き方

フリーランスは増えすぎている?その理由や案件獲得方法について解説

「フリーランス」とは、企業に所属せずに個人で仕事を請け負う働き方を指します。近年、働き方改革や感染症対策からテレワークの働き方が注目され、フリーランスに転身するエンジニアがいる一方、「フリーランスは増えすぎている」と感じる人もいるでしょう。 本記事では「実際にフリーランスは増えすぎているのか」について考察します。フリーランスを取り巻く環境や必要なスキル、案件獲得方法についても解説していますので、参考にしてください。 テクフリでフリーランス案件を探してみる フリーランスは増えすぎている? 実際にフリーランスは増えすぎているのか、調査結果をもとに検証します。 ランサーズ株式会社の「フリーランス実態調査 2024年」によると、フリーランス人口は2019年が1,118万人、2024年は1,303万人という結果が出ており、増加人数は5年間で約180万人となりました。 さらに、フリーランス経済規模に関しては2024年は20兆3200億円で、10年前の14兆6500億円と比較して約5兆7000億円増加しています。どちらの調査でもフリーランスの数は増えていますが、経済規模も増加していることを考えると、一概にフリーランスが増えすぎているとは言い切れません。 出典:ランサーズ株式会社「フリーランス実態調査 2024年」 フリーランスが増えすぎていると考えられる4つの理由 「フリーランスが増えすぎている」と言われるようになったのには、以下の4つの理由が考えられます。 働き方の変化 厚生労働省が2018年に発表した「働き方改革」は、少子高齢化による生産年齢人口の減少という課題を受けて制定された一連の政策や取り組みです。子育てや介護をしながら働く人の多様なニーズに応えることを目的としています。 多様で柔軟な働き方が選べるようにするための具体的なポイントとしては、「労働時間の見直し」と「正規・非正規雇用に関わらない公正な待遇の確保」が挙げられます。 その結果、働く場所や時間を自由に決められるフリーランスの増加につながったと考えられます。 IT人材需要の変化 IT業界の人材不足も、フリーランスの増加に大きな影響を与えました。経済産業省の「IT人材の最新動向と将来推計に関する調査結果」によると、2030年にはIT人材が最大79万人不足する可能性があると予測されています。 そのため、人材不足の解消を目的に業務の一部をフリーランスに委託する企業が増えました。IT企業はリモートワークできる環境が整っている場合が多く、フリーランスとの相性が良いため、今後もエンジニアをはじめ、IT業界のフリーランスは増えていくことが予想されます。 出典:経済産業省「IT人材の最新動向と将来推計に関する調査結果」 フリーランスを取り巻く環境の変化 フリーランスを採用する企業の増加に伴い、エンジニア専門のフリーランスエージェントやクラウドソーシングなどフリーランスと企業をマッチングさせるサービスが増えました。そのため、フリーランスへ転向しやすい環境が整ったと考えられます。 また、新型コロナウイルスの流行によりリモートワークが急速に普及したため、出社しなくても働けるフリーランスへの注目度が上がりました。このように、ここ数年でフリーランスを取り巻く環境は大きく変化し、仕事が見つけやすくなったり働き方を見直す人が増えたりしたことで、フリーランスが増加したと考えられます。 DXの影響 DXとはDigital Transformation(デジタルトランスフォーメーション)の略で、直訳すると「デジタル変革」です。ビジネスの分野でのDXは、AI・IoTなどの技術によって業務効率化や新しいビジネスモデルが生み出されたことにより、リモートワークの導入が進みました。 結果として空いた時間を副業に使う人、リモートワークが可能なフリーランスへ転向した人が増えたと考えられます。 フリーランスはやめたほうがいいと言われる理由 フリーランスエンジニアは独立してから1年以内に廃業する人が約30%、3年以内に廃業する人は50%を超えるという調査結果もあり、継続するのが難しい働き方です。 ここでは、フリーランスはやめたほうがいいと言われる理由と解決策を紹介します。 収入が不安定になりやすい フリーランスは成果に応じて収入が変わるため、毎月の収入が安定しません。その結果、固定給を受け取る会社員に比べて収入が不安定になりやすく、これが「フリーランスはやめたほうがいい」と言われる理由の一つとされています。 さらに、景気が悪化したり会社の業績が落ち込んだりして予算や人件費を削減する局面では、業務委託のフリーランスが最初に契約を打ち切られたり、更新を見送られたりする恐れがあります。収入を安定させるには、複数の企業と契約し、一社だけに依存しない姿勢が大事です。 社会的信用が低い 収入が安定しないフリーランスは、社会的信用が低いと言われています。例えば、住宅ローンやクレジットカード、賃貸物件の入居などの審査が通りにくくなるケースがあります。 対策として、「住民税の課税証明書」「確定申告書の控え」「所得税の納税証明書」などを準備すれば、安定した収入を示せます。さらに、会社員として働いている間に審査を済ませたり、法人化して信用度を高めたりする方法も効果的です。 営業活動が難しい フリーランスは自分で営業して仕事を得なければならないため、営業が苦手な人には厳しいでしょう。たとえ十分なスキルや知識があっても、自分をうまく売り込めなければ案件を取れません。特に活動を始めたばかりの段階では、同じレベルのライバルが多く、競争は激しくなりがちです。 近年は仲介役としてフリーランスエージェントが多数存在します。営業に自信がない場合は、これらのサービスを活用するとよいでしょう。 フリーランスで成功するために必要な能力 増加しているフリーランスの中で稼げるようになるためには、技術や知識以外にも必要な能力があります。以下で、フリーランスで成功するために必要な能力を紹介します。 コミュニケーション能力 フリーランスは「1人で自由に働ける」と思われがちですが、実際には多くの場面で人と関わります。たとえば、案件を取るための営業や料金交渉、依頼内容をすり合わせる打ち合わせなどで相手とやり取りします。 丁寧なコミュニケーションを心がければ、クライアントは安心して仕事を任せようと感じます。さらに、勉強会やイベントに参加して人脈を広げれば、新しいビジネスチャンスが生まれやすくなるでしょう。 業務遂行能力 一から仕事を教えてもらえる会社員と違い、フリーランスは即戦力として求められることも多く、個人の実力が直接収入に反映されます。そのため、常に知識のアップデートやスキルを向上させて、経験値を上げていくことが大切です。 業務遂行能力が高くなると、単価が上がったり応募できる案件が増えたりするメリットもあります。フリーランスとして成功するためには、まず企業に勤めて、ある程度実務経験を積んでから独立するのもひとつの方法です。 自己管理能力 フリーランスは複数の案件を同時に進める場面があるため、スケジュール管理や体調管理、事務処理など幅広い自己管理が欠かせません。働く場所や時間を自由に選べる一方で、自分でモチベーションと予定を管理しないと作業効率が落ち、成果物の質も下がります。さらに、案件をこなすだけでなく、収支の管理や確定申告といった事務手続きも自分で対応する必要があります。 対策としては、スケジュール管理アプリを活用したり、集中しやすいコワーキングスペースを確保したりすると、作業を効率的に進められるでしょう。 フリーランスの案件獲得方法は? 案件が獲得できなければフリーランスとして仕事を始められません。以下で紹介する案件獲得方法から、自分に合った方法を探してみてください。 フリーランスエージェントを利用する フリーランスエージェントは、クライアントとフリーランスを結び付ける仲介サービスです。担当者がスキルや希望条件をヒアリングし、営業活動も代行するため、自分に合う案件を効率的に探せます。 会員登録に料金はかからず、報酬が支払われる際に手数料が差し引かれる方式が一般的です。契約の締結や条件交渉もサポートしてくれるため、営業が苦手な人や、業務に集中したい人に向いています。 クラウドソーシングで案件を探す クラウドソーシングは、クライアントがサイト上で仕事を公開し、フリーランスが自ら案件へ応募する仕組みです。興味のあるジャンルや挑戦したい業務を選び、これまでの経験やスキルをどう活かせるか提案し、採用されれば仕事を受注できます。 案件数が豊富なのがメリットですが、人気の案件には応募が集中しがちです。そのため、採用されるには他の応募者と差別化できるスキルや提案が必要になります。 SNSやブログなどを使って営業活動をする SNSやブログで活発に情報を発信すると、案件獲得につながります。仕事内容や仕事への姿勢、過去の作品などを紹介すれば、ユーザーや企業からオファーを受け取れる可能性が高まります。 SNS上で人材を募集する企業もいるため、リプライやダイレクトメールで連絡し、そのまま受注に進むケースもあります。 こうした媒体で営業する際は、過去の成果物をまとめたポートフォリオと連絡先をプロフィール欄やメインページなどの目立つ場所に記載しておくことが大切です。 知人に紹介してもらう 取引のあるクライアントやフリーランス仲間など、知人から仕事を紹介してもらうと役立ちます。すでにクライアントとつながっている人経由の紹介なら、最初から一定の信頼がある状態で仕事を始められる点がメリットです。紹介を受けるには、「自分が仕事を探している」ことを、明確に知人に伝えておくとよいでしょう。 紹介してくれそうな知人がいない場合は、セミナーや交流会に参加して人脈を広げるのもよい方法です。新しいつながりが増えれば、案件を得られるチャンスも広がるでしょう。 最後に 働き方の選択肢が増え、IT人材が不足している影響で、フリーランス人口は着実に増えています。ただし、フリーランス市場も拡大し、需要も高まっているため、人数が過剰とは言えません。 多数のフリーランスの中で活躍するには、常にスキルを磨き、自己管理を徹底する姿勢が欠かせません。案件を得る方法としては、フリーランスエージェントを活用したり、SNSで積極的に営業したりと、自分に合う手段を選びましょう。 テクフリでは、フリーランスエンジニアの案件を多数保有しています。フリーランスとしてのキャリアに関心のある方や、さらなる年収アップやキャリアアップをご希望の方はぜひお気軽にご登録ください。 テクフリでフリーランス案件を探してみる 採用担当者の方はこちらの記事もご覧ください。 参考:無料求人サイト一覧|掲載コスト0円で採用を成功させる方法 – しゅふJOB
Python

Pythonの資格はエンジニア就職に有利?種類や難易度を解説

Python資格試験について、種類やその概要を詳しく解説しました。具体的な勉強の仕方も紹介しています。Pythonの資格試験にはどんな種類があるのか知りたい方や、それぞれの試験がどのくらいの難易度なのかを知りたい方は、ぜひ最後まで読んでみてください。実際就職に有利になるの?という、気になる疑問にも答えています。 Python案件を探してみる Python資格試験の種類 Pythonの資格試験は、3つあります。その3つは国内の資格試験と、国際的な資格試験の2つに分類されます。 国内資格 Python3エンジニア認定基礎試験 国内資格 Python3エンジニア認定データ分析試験 海外資格 Python Certifications 国内の資格試験は、「Python3エンジニア認定基礎試験」と「Python3エンジニア認定データ分析試験」があります。どちらも、一般社団法人Pythonエンジニア育成推進協会が認定している民間の資格試験です。 海外のものでは、「Python Certifications」という資格があります。ポーランドを拠点に活動している、OpenEDG Python Institute が実施している資格試験です。 以降、3つの資格試験について詳しく説明します。 Python3エンジニア認定基礎試験 Python3エンジニア認定基礎試験は、CBTという、全国にあるテストセンター(オデッセイコミュニケーションズ)でいつでも、受験可能な試験です。 試験は、Pythonチュートリアルという本を元に作られていて、その中から出題されます。問題の配分は、ウェブサイトより確認可能です。 参考:Python 3 エンジニア認定基礎試験 出題形式 CBT方式(マウス選択問題) 試験時間 60分 問題数 40問 内容 文法などの基礎的な問題 合格基準 70%以上で合格 受験料 11,000円(学割5,500円) Python3エンジニア認定データ分析試験 Python3エンジニア認定データ分析試験は、Pythonを用いて行うデータ分析の基礎や、その方法についてが出題される試験です。この試験も、CBTという全国にあるテストセンター(オデッセイコミュニケーションズ)でいつでも、受験可能です。試験内容は、Pythonを使ったデータ分析の基礎知識で、範囲も限定されています。 参考:Python3エンジニア認定データ分析試験 出題形式CBT方式(マウス選択問題)試験時間60分問題数40問内容Pythonを用いた、データ分析の基礎や方法について合格基準70%以上で合格受験料11,000円(学割5,500円) Python資格は就職に有利? Python資格は就職に必要なのでしょうか?資格を持っていることで、就職に有利になるなら、取得する価値がありますよね。Python資格の取得で得られるメリットを3つ紹介します。 スキルレベルの証明 キャリアアップにつながる スキルアップにつながる スキルレベルの証明になるというのは、採用側が履歴書を見た時点で、どのくらいのレベルなのかを測ることができます。特に国内資格2つは、未経験者がPythonスキルを求められる企業への転職をするときに役立ちます。初心者でも基礎は最低限理解していることを証明できます。 ある程度経験を積んだプログラマーの方は、より充実した福利厚生や収入を目指しての転職であれば、Python Certificationsのレベル3.4が有利に働くでしょう。高い技術を証明できるので、企業に自分をアピールできます。 キャリアアップについては、Python資格が企業や研究機関で利用されていることから、エンジニアとしてのキャリアを積み上げていくことに、プラスに働くでしょう。 スキルアップにつながるというのは、学習のモチベーションになる、学習効率の向上につながります。 資格をとるということは、自分のスキルがどのくらいなのかを証明できるので、取得することにメリットはあります。ですが、資格を取ったから採用される、というわけではありません。採用側の指標になり、一定の評価を受けることができますが、それ以降採用につなげられるかどうかは個人の努力次第です。 Python資格の難易度と勉強時間は? Python資格を取得することは、どのくらい難しいのか、どのくらいの時間を必要とするのかを解説します。 難易度 まず難易度についてです。 ・Python3エンジニア認定基礎試験:合格率77%。基礎的なことが出題されるため、難易度は比較的高くはない。 ・Python3エンジニア認定データ分析試験:合格率不明(基礎試験よりは合格率が下がる可能性が高いが、出題範囲や教材が明確なので、ある程度高い合格率になると予想される) ・Python Certifications:前提として、英語で出題される レベル1.PCEP=プログラマーエントリーレベル。Python3エンジニア認定試験とほとんど同じレベル レベル2.PCAP=Pythonを使った実務遂行レベル。基礎知識に加えて、実務に必要とされる、応用のような問題もあり。 レベル3.PCPP32-1=プログラマーとして、高い技術力を証明できるレベル。証明できるレベルが高く、転職にも有利に働く。 レベル4.PCPP32-2=レベル3のさらなる上級レベル。レベル3を保有していることが受験の条件。 勉強時間 必要な勉強時間は、それぞれ試験ごと、個人の経験やスキルによって異なります。紹介する勉強時間は、目安であるため、合格できるかできないかは個人の努力次第です。 ・Python3エンジニア認定基礎試験、Python3エンジニア認定データ分析試験 →Python実務経験がある人:4時間程度 Python以外の言語の実務経験がある人:8時間程度 未経験:40時間以上 ・Python Certifications レベル1.PCEP→Python3エンジニア認定基礎試験と同等レベル、同等の時間(+英語力) レベル2.PCAP→実務経験があれば比較的少ない時間で合格可能。応用問題が出題されるので、初心者には難易度が高いため、かなりの時間を必要とする(+英語力) レベル3.PCPP32-1→プログラマーとして技術の高さの証明になるほどの試験なので、実務経験があっても、時間をかけて勉強が必要。(+英語力) レベル4.PCPP32-2→レベル3のさらなる上級レベルなので、資格試験の勉強としてしっかり時間をかけて取り組む必要がある。受験条件として、レベル3.PCPP32-1を取得しておかなければならない。(+英語力) Python資格の勉強方法 Python資格を取得するための勉強方法を紹介します。どの試験も、出題範囲が限定されていたり、過去問があるため、学生時代のように勉強するのが一番近道だと思います。具体的な方法を3つ紹介します。 過去問を活用する どんな問題が出題されるのかを知るため、実際に問題に慣れることを目的に、過去問を活用しましょう。出題範囲にないものを勉強しても、資格試験に合格するという目標においては時間の無駄になるので、効率よく勉強していくためには、出題範囲を理解し、それに沿った学習を進めていく必要があります。公式サイトにも、出題範囲が一部公開してあるので、確認しておきましょう。 模擬試験を受ける 問題や試験を受ける感覚に慣れるために、模擬試験を受けましょう。自宅で勉強するのと、会場で受けるのは、雰囲気や緊張感が全く違います。それらを学習しながら感じ取れるのは、模擬試験で体験してみることが重要です。 本・参考書で勉強をする 問題の数をこなして、たくさんの問題に触れましょう。たくさんこなしていくことで、問題を解くスピードが上がります。実際の試験でも、わからない問題があれば焦ってペースをみだしてしまう可能性がありますが、数をこなした努力から、自信を持って試験に挑むことができます。 Python資格試験のフロー 最後にPython資格試験を受けるためのフローを説明します。 申し込み→当日会場で受験(→その場で結果が出る) という流れです。 資格試験へ申し込み Python3エンジニア認定基礎試験とPython3エンジニア認定データ分析試験は、通年で受験ができます。各都道府県に設置されている、試験会場で日程を選択し、受験日程と場所を決めます。 申し込みの方法は、「odyssey ID」を登録し、個別に試験会場へ問い合わせて日程を調整します。 当日の持ち物 試験当日の持参物は以下の3つです。 Odyssey IDとパスワード 受験票 本人確認書類(免許証など) 本人確認ができないと、受験ができなくなる場合があるので、忘れないように気をつけましょう。 まとめ Pythonの資格試験について解説をしました。資格を取得することで、自分のスキルを証明できることや、学習効率向上、モチベーションにつながるなどのメリットがあります。Pythonは今後も需要が高まっていくと予想されているので、習得におすすめの言語です。 これから学習を始める方も、Pythonを使って転職を考えている方も、資格取得を初めて見てはいかがでしょうか。 テクフリでフリーランス案件を探してみる
Python

Pythonフレームワークのおすすめ7選【2025年最新版】

PythonはWebアプリケーション開発だけでなく、データ解析や人工知能(AI)開発にも活用できる言語です。本記事ではPythonのフレームワークについて解説していきます。最後まで読んでいただければ、開発目的に沿ったフレームワークの選定に役立てられるでしょう。 Python案件を探してみる おすすめPythonフレームワーク7選 目的によって有用なPythonフレームワークについて、その特徴を解説していきます。 Django Djangoは2005年にリリースされたフレームワークで、ワシントンポストやNASAで利用されています。Webアプリケーション開発に利用されている、多機能フレームワークです。 Pythonのフレームワークの中でもトップレベルで人気度が高く、どれから学ぶべきか分からない場合、Djangoを選んでおけば間違いないでしょう。また、Djangoは利用者が多いため、分からないことがあっても調べれば解決方法が見つかりやすいというのも初心者にやさしい点です。 参考:Django公式サイト Flask Flaskは2010年にリリースされたフレームワークです。Flaskの大きな特徴は、最低限の機能のみをまとめたフレームワークであり、多機能なDjangoとは正反対の性能をしています。一見すると、Djangoに性能で劣っているように見えますが、コンパクトにまとめられているので分かりやすく、処理が軽いという利点を持っています。 また、Flaskは最小限の機能でまとめられているため、他のフレームワークに比べて自由がきくというのも人気の理由です。しかし、機能が少ないので、必要なものは自分で用意しなければならないという見方もでき、開発工数がかかってしまう点には注意が必要でしょう。 参考:Flask公式サイト Bottle Bottleは2009年にリリースされたWebアプリケーションフレームワークです。前述のFlaskよりもさらにシンプルであり、Bottleはひとつのファイルで構成されています。シンプルすぎるため複雑なアプリケーション開発には不向きではありますが、学習コストはとても低いので、小規模な開発などに使われています。 参考:Bottle公式サイト Tornado Tornadoは2009年にリリースされたWebアプリケーションフレームワークです。Tornadoの特徴は、非同期フレームワークがある点です。処理の際にI/O処理(入出力処理)を後回しにすることで、同時に多数の処理をすることが可能になっています。長時間の接続が必要とされる、ユーザー向けのアプリケーション開発をする方に向いているフレームワークです。 参考:Tornado公式サイト Pyramid Pyramidは、小規模から大規模開発を満遍なくカバーしているフレームワークです。コンパクトさを持ちながらも、さまざまなモジュールを組み合わせることで、大規模開発にも対応できるようになっています。 参考:Pyramid公式サイト Plone PloneはWebアプリ用フレームワークでありながら、企業向けCMSでもあるという、少し変わったPythonフレームワークです。フルスタックフレームワークに近く、Plone1つに多くの機能が備わっています。特にPloneは、データベースも備えているという点が特徴的です。 Ploneを使う場合、MySQLなどのデータベース管理システムを別途使わなくても良くなります。現時点では日本語の情報が少ないため、英語ができないと勉強しにくいかもしれませんが、今後日本でも流行する可能性はあるので、興味のある方は学習を始めておくのも良いでしょう。 参考:Plone公式サイト web2py web2pyは勉強用として開発されたPythonフレームワークです。勉強用であるためPythonフレームワークの中でも習得難易度が低く、覚えることも少ないのが特徴です。他のPythonフレームワークを学んだものの途中で挫折してしまった、という方は、web2pなら習得できるかもしれません。 また、勉強用とはいえセキュリティを強化するための機能も含まれていて本格的なのも特徴です。web2pyを求められる案件数は多いわけではないですが、最近ではアジャイル開発用としても使われています。 web2py公式サイト Pythonフレームワークを利用するメリット Pythonによる開発においてフレームワークを利用すると、以下のようなメリットがあります。 開発スピードが上がる コードの統一性を保持(多人数開発にも対応しやすくなる) バグの減少 セキュリティ面の不安を減らせる フリーランスとして仕事が取りやすくなる 開発スピードが上がる MVP開発やリーンスタートアップという言葉が注目されているように、IT/Web業界では特に、サービスを高速で市場に投下することが重要です。Pythonのフレームワークを利用するのとしないのでは、開発スピードにかなりの差が生じます。 例えばPythonのフレームワークには、データベースアクセスの機能やログイン機能、フォーム作成機能などが備わっているのですが、それらをフレームワークなしでエラー無く完成させるには、かなりの時間を要してしまうのです。 コードの統一性を保持(多人数開発にも対応しやすくなる) プログラミングに限らず全ての仕事にいえますが、コードの書き方にはその人の個性やクセがでます。経験、スキル、年齢、性格、キャリアなど様々な要因によって差が生じるのですが、人が書いたコードを修正するのは、かなり大変な作業です。 フレームワークを利用すれば、コードの統一性を保持させることができます。統一性を保持することにより、多人数開発にも対応しやすくなるでしょう。 バグの減少 Pythonのフレームワークは多くのエンジニアに利用されており、バグが発見されてもすぐに解消されていることが多いです。それに伴い、フレームワークを用いて開発をしたプログラムもバグが少なくなるでしょう。 セキュリティ面の不安を減らせる Pythonフレームワークを使うことは、セキュリティ面の不安を減らすことにもつながります。Webアプリは不特定多数の人が使うものなので、Webアプリ経由でユーザーの個人情報を抜き取られるなどの攻撃を受けることがないように、セキュリティを強化しなくてはいけません。 個人情報が抜き取られてしまうと、何億円もの損害が発生する可能性もあります。ただ、セキュリティの穴が一切ないようにプログラムを構築するのは大変ですし、デバッグの手間もかかってくるでしょう。Pythonフレームワークを使えば、あらかじめセキュリティ対策が備わったプログラムを活用できるため、セキュリティ対策が容易になります。 フリーランスとして仕事が取りやすくなる Pythonの中規模、大規模以上案件では、フレームワークが利用されていることがほとんどです。特にDjango、Flaskの2つは人気のフレームワークとなっており、使える人材と使えない人材では、Pythonエンジニアとして仕事を獲得する難易度に差が生じるでしょう。 Pythonフレームワークを使用するデメリット 一方で、Pythonフレームワークを使用することのデメリットは次の4点が挙げられます。 学習期間が必要 イレギュラーに対応できないことがある 開発現場によって使われるフレームワークは異なる フレームワークなしでプログラミングできなくなる 学習期間が必要 フレームワークを使いこなすにはPythonの理解がある前提で、最低でも数週間は学習をする必要があります。概要を抑えられても、細かい要望を実現しようとすると学習に更に時間がかかることはよくあります。特に使用者が多くないフレームワークの場合、情報量が少なく学習が難しいこともあるでしょう。 また、ドキュメントは基本的に英語で書かれていることが多いため、英語ができないとスムーズに学習を進められない可能性があります。 イレギュラーに対応できないことがある フレームワークはいわゆる「よくある機能」を開発する際には有用です。 しかし、前例が少ない機能を開発したい場合、対応できないことが多々あります。フレームワークは決められたルールに則ってサービスを開発していかなければならないため、イレギュラーが多発するようなサービスではフレームワークを利用しないほうが作りやすいことがあるのです。 ただ、PyramidやFlaskのように最小限の機能で構成されたフレームワークは、他のライブラリと組み合わせて使えるため比較的自由度が高いです。 このようなPythonフレームワークを使うという手もあるでしょう。 開発現場によって使われるフレームワークは異なる Pythonエンジニアは場合によっては、複数のフレームワークを学ばないといけなくなる可能性があります。開発現場によって使われるフレームワークは異なるため、転職する際は新しいフレームワークを1から学ぶ必要が出てくるのです。 特に、フリーランスエンジニアとして働く場合、参画する案件によってフレームワークが変わるため、最低でも2〜3つはPythonフレームワークを習得したいところです。 とはいえ、いきなり多くのフレームワークを学ぶことは簡単ではないというのも事実です。まずは多く使われているフレームワークを優先的に勉強すると良いでしょう。 フレームワークなしでプログラミングできなくなる Pythonフレームワークを使い続けていると、フレームワークなしでプログラミングできなくなってしまう可能性もあります。フレームワークでの開発に慣れてしまい、1からプログラムを構築するとなると、どこから手を付けて良いのか分からなくなるエンジニアも多いです。 Python案件にはフレームワークをまったく使わないものや、その企業独自のフレームワークを使うものもあります。そういった案件に参画できないとなると、案件へ参画する機会を失ってしまいます。Pythonフレームワークを使わずにWebアプリのログイン画面や会員登録画面などを作成する練習も、ある程度は必要になってくるでしょう。 まとめ この記事では、Pythonのフレームワークについて解説してきました。Pythonがプログラミング言語の中で人気を獲得していく以上、フレームワークの必要性も同時にあがってきます。適切なフレームワークを採用することで作業効率を上げて、より良い開発ライフを送りましょう! テクフリでフリーランス案件を探してみる
Python

Pythonの歴史について起源から分かりやすく解説

Python(パイソン)というプログラミング言語について さて、皆さんはPython(パイソン)というプログラミング言語をご存知でしょうか。プログラミング経験がない方にとっては、馴染みのない名前かもしれません。ただ一方で海外に目を向けると、非常に多くのエンジニアたちに利用されている汎用プログラミング言語です。 世界最大のIT企業Googleは、Python(パイソン)を自社の三大プログラミング言語として捉えています。その他、MicrosoftやFacebookなどの一流IT企業も、Python(パイソン)を導入しています。今回は、そんなPython(パイソン)の歴史について見ていきましょう。 Python案件を探してみる Python(パイソン)は意外な誕生秘話を持った言語 Python(パイソン)が誕生したのは1990年。グイド・ヴァンロッサム(Guido van Rossum)という人物によって生み出されました。彼の出身地はオランダです。同国のアムステルダム大学で、数学と計算機科学の修士号を取得しました。 大学を卒業してからはCWI(オランダ国立情報数学研究所)、その後NIST(アメリカ国立標準技術研究所)といった研究機関で働いていました。2015年にはGoogleでも働いています。翌年には、ACM(ニューヨークに本部のあるコンピュータ科学分野の国際学会)からDistinguished Engineerの称号も得ました。まさにIT分野における第一人者と言える存在です。 そんなグイド氏が開発を手がけたPython(パイソン)。開発の起源をたどると、大学卒業後に勤めたCWIにまでさかのぼります。その頃グイド氏は『ABC』というプログラミング言語の開発プロジェクトに携わっていました。これは、当時難解だったBASIC言語に代わる、教育用言語の開発を目的としたプロジェクトです。 結局このプロジェクト自体は成功しませんでしたが、グイド氏は「このABC言語からPython(パイソン)を開発するにあたってのインスピレーションを与えられた」とのことを述べています。 ABCプロジェクトの後、今度はAmoebaというプロジェクトのメンバーになりました。しかしながら、このAmoebaという分散システムが、かなり複雑なシステムだったようです。既存のプログラミング言語では思うように開発が進みませんでした。その時彼は「もっと使いやすい言語があればな」と考えるようになったそうです。その想いがカタチとなったものこそ、『Python(パイソン)』だったのです。 ただそのPython(パイソン)は、1989年12月に「クリスマスの暇つぶし」として開発がスタートしました。現代における超主要プログラミング言語は、実に意外なカタチで開発がスタートしたのです。 テクフリでフリーランス案件を探してみる Python(パイソン)言語の由来 Python(パイソン)という名前の由来は何なのでしょうか。それもABCの影響を受けています。そもそもABCの由来は、「ローマ字の先頭三文字ABCと同じくらい、シンプルで分かりやすく」という意味を込めて、名付けられました。そうは言うものの、先ほど申し上げた通り、その想いと現実にはギャップがありました。 そういったこともあり「由来はあまり深く考えず付けてしまおう」とグイド氏は考えたのです。当初はオフィシャルな開発プロジェクトではなかっただけに、彼はBBCのコメディ番組『空飛ぶモンティ・パイソン』のパイソンから、名前を取りました。もはや悪ふざけに近いレベルだったのです。 Python(パイソン)言語が登場した頃のIT情勢 同言語が誕生した1990年頃は、世界各国でIT技術が目覚ましく発展する時代でもありました。Python(パイソン)との直接的な因果関係はありませんが、IT最先端国家であるアメリカでは、この頃に『政府主導による情報化の発展と、新しい合意の形成』を進めています。 Python(パイソン)が誕生した翌年の1991年には、『高性能コンピューティング法(HPCA)』が成立。 これは、 ①アメリカの安全と発展にとって、コンピューター科学技術の発達は非常に重要 ②ただ、ここ最近は他国の技術が向上している ③それに負けないよう、アメリカがITの領域をリードしていかなければならない。といった目的から生まれた法律です。 アメリカがそのように言う通り、1990年代には各国で新しいプログラミング言語が、次々生み出されています。中でも、1993年のRuby、1995年のPHPといった、Python(パイソン)同様の軽量プログラミング言語の隆盛が目立ちます。 軽量プログラミング言語とは、HTML内に記述できる言語、特定のOSや開発環境に依存しないこと、オープンソースで誰もが利用で手に入れることができることを言います。この頃まさに、後に起こるインターネット革命の、礎が築かれたといっても過言ではありません。 Python(パイソン)言語の成長を確かなものにしたきっかけ Python(パイソン)の人気が拡大したきっかけは2000年10月に公開されたバージョン2の登場です。このアップデートにより、様々な機能が向上しました。例えば、ガベージコレクションの導入。これは、プログラムが確保したメモリ領域のうち、不要になった箇所だけを自動で解放してくれる機能のことを指します。 従来は、メモリの確保・解放それぞれをプログラマ自身が明示する必要がありました。そうすると、メモリを解放する処理を書き忘れて、使用可能なメモリを食いつぶしてしまい、エラーを起こすといった問題がよく起きていたのです。その問題が解消されるということで、プログラマたちにとっては非常に便利な機能として重宝されました。 2005年にはDjango(ジャンゴ)という、Python(パイソン)で実装されたWebアプリケーションフレームワークが誕生します。これは今となってはPython(パイソン)の代表的なフルスタックフレームワークです。 このフレームワークを使うことで、複雑なデータベース主体のWebサイト構築を簡略化出来るようになります。その後2009年にはBottle、翌年にはFlaskなど、続々とフレームワークが追加されました。シンプルにまとめると、開発効率がより一層高まったということです。 関連記事:Pythonフレームワークのおすすめ7選【2024年最新版】 関連記事:Pythonはサーバーサイド開発におすすめ? 必要スキル5選! Python(パイソン)は根強い人気の言語 Python(パイソン)人気は現在に至っても衰えることは知りません。今や、Facebookをしのぐ勢いのInstagramもPython(パイソン)によって開発されています。その他、オンラインストレージサービスのDropboxもベースはPython(パイソン)。 またPython(パイソン)は、機械学習のシステムを開発する際などにも採用されています。機械学習とは一言で説明すると、『コンピューターが、膨大なデータの中に潜むデータの法則性を見つけ出すこと』です。ビッグデータの増加に伴って、機械学習システムの需要は年々高まっています。 昨今の国内求人市場はどうでしょうか。『IT投資動向調査2016』によれば、Python(パイソン)エンジニアの平均年収は約651万円。200を優に超えるプログラミング言語の中で、トップに輝きました。どの企業も、喉から手が出るほどPython(パイソン)エンジニアを求めているということでしょう。 関連記事:Pythonの将来性は高い?他言語との比較や業界の動向を詳しく解説します まとめ 冒頭でもお伝えした通り、Python(パイソン)は、Googleが三大プログラミング言語としてPython(パイソン)を挙げているほど。その利便性・需要の高さは言うまでもありません。今後におけるPython(パイソン)の発展に益々期待が持てそうです。 また、日本国内以上に、海外での人気が高いことから、「世界に羽ばたくプログラマ」を目指してPython(パイソン)の学習に着手するのかいいかもしれません。 Python(パイソン)はコードがシンプルで分かりやすいプログラミング言語。気になる方は、1冊の参考書を手にとってみてはいかがでしょうか? テクフリでフリーランス案件を探してみる
Python

Pythonでできることは?特徴と合わせてわかりやすく解説

Pythonは非常に人気の高いプログラミング言語のひとつで、世界中で多くの人に使用されています。 シンプルな文法と豊富なライブラリを備えており、データ分析や人工知能、Web開発など幅広い分野における開発で使用できます。Pythonは現代のソフトウェア開発における重要な役割を果たしていると言えるでしょう。 本記事ではPythonでできること・できないこと(苦手なこと)について、プログラミング言語としての特徴と合わせて解説します。初心者でも分かりやすい内容となっておりますので、Pythonを利用しているという方だけでなく、Pythonでの開発に少しでも興味のある方はぜひご一読ください。 Python案件を探してみる Pythonの特徴 冒頭でもお伝えした通り、Pythonの特徴は柔軟性と多様性です。シンプルかつ直感的な文法と豊富なライブラリによって開発効率を高めることができ、さまざまなプロジェクトに対応できるでしょう。オープンソースのコミュニティが支えるPythonは初心者でも学習ハードルが低い一方で、プロのエンジニアのニーズもしっかり満たせる能力を持っています。 Pythonの特徴について、さらに詳しく解説していきます。 コードがシンプルでわかりやすい Pythonのコードはシンプルでわかりやすいため、初心者にも扱いやすい言語として知られています。 例えば、他のプログラミング言語では複雑な構文を必要とする操作も、Pythonでは数行のコードで簡潔な記述が可能です。このシンプルさは、プログラミングを学ぶ際の障壁を大きく下げてくれるでしょう。また、Pythonは字下げを利用してコードブロックを区切るため、他の言語よりも読み書きが容易なのも特徴です。コードのデバッグが容易になり、プログラミング初心者がつまづきがちなポイントをクリアしやすくなるでしょう。 ライブラリが豊富である Pythonのもうひとつの大きな特徴は、豊富なライブラリです。 Web開発やデータ分析、機械学習、画像処理など、幅広い用途に対応するためのライブラリが用意されています。例えばデータ分析においては「Pandas」や「NumPy」、機械学習には「TensorFlow」や「Scikit-learn」といったフレームワークが広く使われています。こうしたフレームワークを利用することで複雑な機能も簡単に実装しやすくなるため、開発者が新しいアプリケーションを構築する際も非常に役立ちます。 さらにPythonのライブラリはコミュニティによって常に更新・改善され続けており、最新の技術トレンドに対して迅速に対応できるという点も魅力です。 Pythonのフレームワークについてはこちらの記事で詳しく紹介しています。 Pythonフレームワークのおすすめ7選【2025年最新版】 Pythonでできること 先述の通り、Pythonが利用されている分野は非常に多岐にわたります。 Pythonを用いると実際に何ができるのか、具体的に利用されるフレームワークやライブラリと合わせてさらに詳しくご紹介します。 Webアプリの開発 さまざまな機能を実装するためのフレームワークやライブラリが豊富であることから、PythonはWebアプリ開発において広く利用されています。InstagramなどのSNSやECサイト、業務効率化ツールなど身近なサービスの開発にも使用されていることが多いです。Webアプリの開発には「Django」や 「Flask」などのフレームワークがよく用いられています。 データの自動収集 Pythonを活用すれば、Web上のデータを抽出(Webスクレイピング)することもできます。Webスクレイピングは、Web上の情報を自動で抽出して解析するための技術です。PythonはWebスクレイピングを実施するのに適したプログラミング言語であり、「Beautiful Soup」や「Scrapy」といったライブラリを活用することで効率的にデータ収集を行えます。 このような技術は市場調査や競合分析、ソーシャルメディアのトレンド把握などビジネスの意思決定に役立つデータを集める上で非常に有効です。Pythonを活用すれば複雑なウェブサイトの構造にも対応でき、非技術者でも比較的短期間でスクレイピング技術を習得することができます。ただし、サーバーへの負荷などの観点からスクレイピングを禁止しているWebサイトもあるため、利用規約などを確認したうえで適切に利用しましょう。 データ処理・分析 Pythonは、データサイエンス分野での利用が特に目覚ましいです。例えば「Pandas」はデータ分析を行う際に欠かせないライブラリで、複雑なデータセットの処理や変換を簡単に行うことができます。一方で「NumPy」は、数値計算を効率化して大規模な数値データの操作を高速に行うことができるため、科学計算や工学計算などの分野で広く利用されています。 Pythonのライブラリを利用して複雑な数理計算や膨大なデータの処理をコンピュータに任せることができれば、データサイエンティストはより多くの時間を重要度の高いデータ解析に費やすことができるでしょう。 AI・機械学習の開発 Pythonは、AIや機械学習など現代のテクノロジーを牽引する重要な分野の開発において中心的な役割を果たしています。 「TensorFlow」や「PyTorch」といったフレームワークを利用すれば、深層学習モデルの構築とトレーニングを簡素化して画像認識、自然言語処理、予測モデリングなどの複雑なタスクを実現することができます。AIや機械学習について知識が豊富でない開発者であったとしても、基本的なモデルであれば比較的気軽に構築できるでしょう。 ブロックチェーンの開発 Pythonはブロックチェーンの開発においても利用されています。ブロックチェーンは取引履歴を分散させて記録する技術で、仮想通貨取引などに使用されている技術です。Pythonはハッシュ関数や暗号化ライブラリといった、ブロックチェーン開発に必要なライブラリが豊富にあります。ブロックチェーンは近年注目を浴び続けている技術であるため、Pythonでブロックチェーン開発ができるエンジニアの需要が伸びていくことも予想できます。 組み込みアプリの開発 IoTデバイスや家庭用自動化システム、環境監視システムなどさまざまな用途においてもPythonを活用することができます。 Pythonには、GPIO(汎用入出力)ピンを制御するためのライブラリや、データ収集、センサーからの読み取り値の処理など、組み込み開発に特化した多くのリソースがある点も強みです。そのため、Pythonでの開発経験が浅いエンジニアでも比較的簡単にハードウェアの制御が行え、創造的なプロジェクトに挑戦することができます。 テクフリでフリーランス案件を探してみる Pythonができないこと・苦手なこと Pythonがさまざまな分野の開発において使用されていることをお伝えしてきましたが、適切な用途においてPythonを活用するために、できないことや苦手なことについても理解しておきましょう。 スマホアプリ・デスクトップアプリの開発 Pythonはスマホアプリやデスクトップアプリの開発においてはあまり用いられていません。これはPythonが実行速度においてCやC++、Swift、Kotlinなどに比べて劣るためです。また、スマートフォン向けのアプリ開発には、それぞれのプラットフォームに特化した言語やフレームワークが存在し、それらを使用した方が効率的であるということも理由として挙げられます。「Kivy」のようなライブラリを使用すればPythonでデスクトップやモバイルアプリケーションを開発することも可能ですが、一般的に強く推奨されることはありません。 高速処理が必要な開発 Pythonは高速処理が必要とされる開発を比較的苦手としています。Pythonは動的型付け言語であり、処理速度が他の言語よりも少し遅いのがデメリットです。特に大規模なデータセットや複雑な計算を必要とする場合、処理にかかる時間が課題となってしまう可能性があります。リアルタイム処理や大量のデータを高速処理する必要のあるアプリケーションでは、CやC++のような言語が適しているでしょう。 しかし性能が最優先される場合を除き、プロトタイピングや中規模のアプリケーション開発では、Pythonの生産性の高さによってこのデメリットを補うことが可能です。NumPyやPandasなどの高性能なライブラリを使用することで処理速度を向上させることもできますが、完全な解決策とはいえないでしょう。 Pythonの将来性 Pythonの人気は近年ますます高まっており、AI、データサイエンス、Web開発など、多くの分野において需要がさらに拡大すると考えられています。特にAIとデータサイエンスの分野では、Pythonの簡潔な構文と強力なライブラリが研究者や開発者から高い評価を受けています。 非常に人気が高い言語であるPythonは、利用者のコミュニティも大規模であり、世界中の開発者が日々新しいライブラリやツールを開発しています。したがってPythonは新しい技術トレンドに対しても迅速に適応することができ、こうした点からも将来性の高い言語と言えるのではないでしょうか。Pythonはオープンソースであるため、多くの企業や教育機関がPythonを採用しやすく、プログラミングの入門言語としても導入されるケースが増えています。これは将来的にPythonを使える人材が増えることを意味しており、Pythonは今後も長期にわたって重要な技術スキルのひとつとして位置づけられるでしょう。 Python初心者におすすめの勉強法 Pythonはさまざまな開発に役立てられることがお分かりいただけたのではないでしょうか。何かしらのプログラミング言語を用いた開発経験のある方なら、比較的簡単に習得することができるかもしれません。一方でプログラミング言語に触れたことのない方でも、Pythonは学習ハードルが比較的低い言語です。Pythonでの開発経験がない初心者の方にも効果的な勉強法を紹介しますので、学習を始めようと思っている方の参考になれば幸いです。 Udemyなどの動画で学習する 視覚的に学ぶことを好む方には、「Udemy」などのオンライン動画学習がおすすめです。Udemyでは、Pythonの基礎から応用まで、幅広いレベルの学習コースが用意されています。動画を用いた学習は実際のコードの書き方や動作の様子をリアルタイムで見ることができるため、プログラミング初心者でも視覚的に理解しやすいのがメリットです。 講師がコードを書く過程での考え方やデバッグの方法なども学べるため、テキストのみを用いて独学を進める場合と比べてより実践的なスキルが身につきやすいのも魅力でしょう。 参考書で学習する 基礎からしっかりと学びたい方や、自分のペースでじっくりと学習したい方には、参考書を用いたテキストベースの学習がおすすめです。市販の参考書は多岐にわたるため、初心者向けから上級者向けまで自身の学習レベルに合わせて選ぶことができます。参考書を使った学習の良い点は、理解できなかった部分を繰り返し読むことができること、そして、辞書や参考書としても長く使えることです。ご自身のプログラミングレベルや目的に合った参考書を探してみてはいかがでしょうか。 まとめ Pythonはその汎用性により、世界中で愛用されているプログラミング言語です。Web開発からAI、データサイエンスまで幅広い分野での活用が可能であり、初心者にも学びやすい言語とされています。しかし全ての領域において最適というわけではなく、学ぶ目的や将来のキャリアパスに合わせて、適切な言語を選択する必要があります。Pythonの学習に限らず、プログラミングの学習においては、基礎的な部分の理解から始めて実践的な演習を通じて知識を深め、コミュニティでの交流などを通じてさらに習熟度を高めていくのが有効です。 Pythonは比較的学習ハードルの低いプログラミング言語としてご紹介しましたが、プログラミング初心者にとっては決して簡単とは限りません。自身のペースで学習を楽しみながらも、Python活用の可能性に触れてみてはいかがでしょうか。 テクフリでフリーランス案件を探してみる
<span class="translation_missing" title="translation missing: ja.layouts.footer.icon_back_to_top">Icon Back To Top</span>
TOP